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Abstract

3D game environments require players to adapt to the en-
vironment and user interfaces, imposing psycho-motor,
cognitive and strategic challenges, which players may
adapt to in different ways. Navigation in a 3D game is
therefore complex, so that any specific instance of player
movement may involve features of the virtual space,
game-world physics, user-interface controls, the player’s
goals and intentions, and responses to other players’ ac-
tions. Moreover, different players or different types of
players may have different approaches to navigation. To
fully understand the skills players acquire for successful
game play, we need a statistical model for navigation.
This paper presents one approach to modeling naviga-
tion in which players’ actions govern transitions in a net-
work of driving states. The structure of this model is
explained, and exemplified from data drawn from 2421
half-hour long official matches from the Games United
League of BZFlag, an online multiplayer tank battle
game. Extensions of the model to obstacle or threat
avoidance, strategic goal attainment and individual navi-
gation styles are also discussed.

Keywords: Virtual space, navigation, statistical model,
Markov model, state transition

Introduction

Multiplayer online games (MOGs) are a recent but
highly popular cultural form used for both recreation
and learning (Barab et al., 2005; Bardzell et al., 2012;
Bruckman, 1995). MOGs also draw scholarly atten-
tion for what they illustrate about aesthetic experience
(Bardzell et al., 2012), economics and computer sys-
tem security (Castronova, 2005; Ahmad, et al., 2009,
2010), sport (Taylor, 2012), and culture and community
formation (Cherny, 1999; Herring et al., 2009; Paolillo
and Kutz, 2008; Ducheneaut and Moore, 2004). When

MOGs employ 3D graphical worlds, navigation is cen-
tral to a player’s tasks. Navigation is related to aes-
thetic experience, e.g., as flying in second life (Boell-
storff, 2010) permits experiencing graceful movement or
scenic views. Navigation is also an important cost in-
curred in gameplay, requiring real-world time, and so
bearing on the real-world value of, e.g. “gold” in Ev-
erquest or World of Warcraft (Castronova, 2005; Ahmad,
et al., 2009, 2010). Quests also take time and resources,
and players accomplish them by traveling to one or more
(possibly distant) places, retrieving artifacts and bring-
ing them to some other location, while navigating other
hazards. Game physics, interface controls and the design
of the 3D world contribute additional challenges. Differ-
ent map layouts provide different affordances for game
goals, and players have to learn these features and how
to navigate with and around them. Different players may
also adopt different approaches to solving some of the
same problems, which can become routinized and later
recognized as player-specific “play styles”.

How then do players navigate a MOG? What are the
roles of the user interface, the virtual environment and
the game physics in shaping a player’s navigation? What
different approaches to navigation are there and how do
they stand in comparison to one another? What methods
can we use to uncover the nature of navigation in a 3D
game?

This paper contributes to a larger program of research
(Herring et al., 2009; Paolillo and Kutz, 2008; Paolillo,
2012) by examining movement within a MOG, specifi-
cally, in a corpus of saved games from the Games United
League of BZFlag, a cross-platform, open source MOG
in which players pilot tank avatars in a competitive,
capture-the-flag game. Player position/velocity update
records are analyzed to reveal the players’ systematic
driving choices, which are used in aggregate to construct
a Markovian state-transition model of driving behavior.
This model can be extended with effects for modeling
individual players’ navigation style, object collisions,
threat changes and player interaction. This approach has
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implications for modeling play style more generally that
go beyond those of other current approaches to avatar
movement (Liang et al., 2009).

This paper is organized as follows. We begin with a dis-
cussion of BZFlag and the Games United League, ex-
plaining features of both that pertain to avatar movement.
We then consider the organization and processing of the
data for the state-transition analysis of player naviga-
tion. Following this, we explore the nature of the state-
transition network model, and develop a statistical model
to verify the observations about the state-transition net-
work. Finally, we discuss general conclusions form this
work.

BZFlag and the Games United League

BZFlag

BZFLag is a 3D tank-battle game in which players pi-
lot individual tanks, shoot other players’ tanks and carry
flags that afford special abilities (“superflags” for in-
creased speed, shorter shot reloading, etc.) or sup-
port game goals (e.g., capturing an enemy team’s flag).
BZFlag originated as a LAN application written in 1992
by Chris Schoeneman for Silicon Graphics workstations,
and has since become an open source project under the
LGPL license, headed by Tim Riker. It has been adapted
to Internet-based play and is available for most common
platforms. Its current version at the time of this writ-
ing is version 2.4; the source code is written in C++ and
housed on SourceForge. An ad hoc network of devel-
opers, server administrators, map designers, in-game ad-
ministrators and players provide the server infrastructure
and player base of the game. Active servers are listed
on a central server list, and various websites and IRC
channels support out-of-game communication. As open
source, BZFlag is relatively easy to modify as needed for
conducting analyses of gameplay.

Driving in BZFlag

Player navigation is possibly the most fundamental skill
in the game BZFlag; without having learned it, and
learned it well, it is impossible to achieve game goals,
to share in teamwork or achieve any of the other things
that the community values. BZFlag offers players a first-
person perspective on the 3D virtual world through the

“heads-up-display” (HUD), which comprises the main
screen visible in the game client (Figure 1), and presents
the information required for gameplay. The first-person
field of view fills the HUD, and a number of interface
elements are superimposed on top of it. A score list
for connected players appears on the upper left, and a
radar screen on the lower left. Chat and system messages
occupy the bottom, and the center contains the “mouse-
box", which is used for movement and shows the aiming
of the tank. These features of the display can be turned
on and off or resized as desired, using the options menus
in the game client.

Figure 1. The heads-up-display in BZFlag.

Avatar movement is accomplished by positioning the
mouse pointer of the mouse with respect to the two con-
centric square boxes of the mousebox. If the pointer is
within the center-most box (“mouse centered”), the tank
is stationary. If the mouse is above the center of the box
and inside the outer box, the tank drives forward at a
velocity proportional to the distance between the center
box and the top edge. If the pointer is below the cen-
ter box, the same is true, but in the backward direction,
and with the condition that maximum backward velocity
is half that of maximum forward velocity. Positioning
the mouse to the left of the center box turns the tank
left, and to the right of the box turns it right, again at
a rate proportional to the distance between pointer, and
the center box and the edge. Since movement velocities
are limited at their maximums, full forward, backward
and turning velocities are easily achieved by positioning
the mouse outside the mousebox. This simple interface
prohibits certain kinds of movement (e.g. “strafing”, or
sideways movement), but it makes controlling the tank
a relatively simple action, whose elegance is highly val-
ued by the leaders of the development team.1 Shooting

1In the BZFlag forums, players often request modifications
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is accomplished by clicking the (left) mouse button; nor-
mally there are a limited number of shots that can be fired
before a timed reloading wait period. Jumping, when
permitted, is accomplished separately, by tapping the tab
key (a jet-flame animation under the tank suggests the
source of the impulse). A flag is also “grabbed” when
a tank not already carrying one passes over its position
on the field; tanks may hold one flag at a time, and the
player may drop the flag by hitting the spacebar (or other
configured key). These are the main interface actions
available to a BZFlag player.

The Games United League

Committed BZFlag players tend to favor specific game
modes, and organized play in the form of “leagues” is
common. One such league is the Games United (GU)
League (www.guleague.org), which fosters play among
a set of player-organized teams in capture-the-flag (CTF)
style games (“matches”). The GU League was formed in
2005, and to date has recorded more than 12 thousand
matches. Teamwork is cultivated, and good sportsman-
ship is encouraged by policies enforced by league admin-
istrators.

GU League play is strictly two-team CTF played on the
HiX map (Figure 1), a square map whose dominating ge-
ographic feature is an elevated, X-shaped obstacle cov-
ering most of the map. Shots are limited to three before
reloading, jumping is permitted and shots ricochet off of
obstacles rather than simply stopping. Tanks move with
the default movement parameters of the BZFlag game:
forward velocity is limited to 25 world units, backward
to 12.5. Shots travel relatively slowly compared to tank
speed (though faster than the tanks themselves), so dodg-
ing shots is possible. “Superflags” (which alter game
physics and thus complicate gameplay) are strictly pro-
hibited. The only flags are two team flags used in flag
capture. GU matches are played with two teams of bal-
anced size (typically with two or three person teams), for
15, 20 or 30 minutes.2

In the HiX map, various square platforms and pyramidal
structures support the central X, leaving four channels
under each branch for tanks to drive and shoot through.
Platforms at two different levels on the X may be ac-
cessed by jumping or via up/down teleporters in the four
corners. The lower platforms of the X are bisected by
a wall that runs most of the length of each branch. A
square catwalk running the entire outside of the play-

ing field is connected to the X at the second platform
level. Team bases (Red and Purple) reside on elevated
platforms at this same level supported by four tall pyra-
mids each, and connected to the square catwalk. There
are four such bases, and the entire map has 4-way ra-
dial and reflective symmetry, but only the Red and Pur-
ple bases, at opposite ends of the map’s x dimension, are
used in GU matches. Four additional square obstacles sit
in front of each base, and four more obstacle blocks sit
on top of the catwalk behind each base. A final octagonal
block sits on top of the center of the X, with an octagonal
pyramid over it.

Figure 2. The HiX map, on which the GU League plays
its matches.

These map features have distinct uses, and construct
common pathways for movement. Since flag capture and
spawning after capture involves the bases, pathways onto
and off the bases are very important. These tend to be via
the obstacle block in front of the base, or via the catwalk
at the back. The corners of the map furthest from the
opponents’ base, behind the corner teleporters tend to be
used for storing the flag, as it is the most protected and
inaccessible spot; alternatively the obstacle block on the
catwalk in back of the base is used for the same pur-
pose. Travel to and from the base via jumping is endan-
gered by ricochet shots off of the base-supporting pyra-
mids, which can also be used for travel to the base, but
in a way that requires considerable skill. The catwalks

to the movement system, such as strafing, but these are rou-
tinely turned down, because they would conflict with the vision
for the project.

2All of the official games in the present corpus are 30-
minute games, 15 and 20-minute games having been imple-
mented later.
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and the top of the X are often used for offensive flag-
carrying, as they are relatively inaccessible, but they are
also highly exposed locations when an opposing player
is at the same level. The center octagonal block prevents
spawn-killing after flag capture, but also presents com-
plex ricochet possibilities to the experienced players, as
do the pyramidal structures supporting the X. The cen-
ter of the map is most actively used for battle, followed
by the obstacle blocks in front of the bases and the four
corner regions. These are just a few of the many naviga-
tional and strategic aspects of the HIX map which can be
mentioned. GU players like the HIX map and the game
style for its elegance and strategic subtleties.

Database and data processing

The BZFlag game server program has a built-in record-
ing feature, which the GU uses on its servers to capture
gameplay for future reference. Since 2007, more than
12,000 GU League matches have been automatically
recorded by the servers; these are processed using var-
ious scripts for game details (players, observers, score)
which are subsequently posted on the server owner’s
websites. Replay servers permit the recorded games to be
viewed again, as desired. In November 2007, I obtained
2431 game files for matches which had been stored be-
tween February 4, 2007 and November 11, 2007 by one
GU server administrator. These files were then pro-
cessed using a specially-modified version of the BZFlag
server to re-encode the information in the game files as
SQL data. The data were brought into a PostgreSQL
database, which was then queried using specially-written
SQL functions to match the information needed to re-
construct the game’s state at any given moment (e.g. by
joining player names to the player position/velocity up-
date information). These data were then processed us-
ing the R statistical programming language and environ-
ment (R Development Core Team, 2012), with additional
packages for PostgreSQL connectivity (R Special Inter-
est Group on Databases, 2009; Conway et al., 2012), 3D
visualization using OpenGL (Alder and Murdoch, 2012)
and network visualization (Butts, 2010).

There were four phases to the processing of this data:
(1) design and population of the database, (2) devel-
opment of queries and R functions to reconstruct game
state, (3) checking the data for integrity, and (4) develop-
ing the statistical analysis of player movement. The first
three steps are extensively discussed elsewhere (Paolillo,
2012), so we focus primarily on the analysis of move-

ment states here.

Figure 3. Player positions and movement in a GU
League game. Red and purple traces represent move-
ments of red and purple team players, respectively. Red
spheres indicate locations of the red team flag, pur-
ple spheres represent locations of the purple team flag.
White spheres represent player spawn points, and orange
spheres represent player death points.

Analysis began by querying the activities of all player for
the course of an entire game: when players connect and
join a given team, when they spawn, move, fire shots, kill
other players, die, and disconnect. Similar information is
obtained for the team flags, representing spawns, grabs,
carries, drops, and captures. Every action and event is
associated with a timestamp (calibrated in milliseconds),
so that the exact state of the game at any given time can
be computed. Selected games were plotted in 3D visual-
izations as an integrity check; Figure 2 shows one such
visualization, where the movements of players are repre-
sented as traces, and the locations of flags are represented
by spheres. In Figure 2, the traces can be recognized as
realistic in-game movement, e.g., the traces to and from
the Red and Purple bases on the left and right, respec-
tively, the circumnavigation of obstacles or via the chan-
nels, carrying team flags across the top platforms of the
X, etc.

Initially, the data has no representation of game state as
such: each player’s movements and actions are repre-
sented independently. Moreover, the timestamps associ-
ated with different players do not necessarily match, so
simultaneous relationships of different players must be
established separately.3 This was addressed by taking

3This is not so much of an issue for the game client, because
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the original data and performing linear interpolation on
the series for each player, so that positions, velocities,
etc., are assigned for a matching set of time points, at
100 millisecond intervals.

The distributions of the player variables for movement
were then analyzed. There are eight such variables
in each player update: x, y, and z coordinates for the
player in world units, an azimuth (facing) direction in
radians, alongside velocities for all four, dx, dy, dz, and
da. A Principal Components Analysis (PCA) of 1 mil-
lion player updates showed these variables to be statis-
tically independent — correlations among the variables
are weak, and there is no more information in any given
principal component than there is in one of the original
variables. Consequently, PCA, Factor Analysis and re-
lated techniques cannot be used to reduce the variable
space in useful ways, and an alternative means of ap-
proaching the data needs to be found.

The velocity variables are very closely associated with
user actions. If an update contains a non-zero component
for any of the velocities, then it can generally be assumed
that the user is using the driving interface to produce
movement. The only exception is when game physics
intervenes, and the tank is in free-fall. On the HiX map,
this only happens once the tank has jumped (or, less com-
monly, rolled off of a platform) and is in mid-air. The ve-
locity variables are represented in world-centered coor-
dinates; to understand them in terms of user actions, they
need to be transformed into user-centered coordinates,
via trigonometry. Examining the transformed velocity
variables reveals the patterns in Figure 4.

In the top panel of Figure 4The entire plot fits in a circle
of radius 25 (the maximum tank velocity) centered on
the origin on the dx and dy scatterplot. Although this is
maximum forward velocity the same velocity is observed
in all directions, as can be seen from the outer circle of
points; any such points other than straight forward (di-
rectly to the right on the x axis) represent travel in free-
fall. A similar circle of points at half the radius (12.5)
describes free-fall after backward jumping.

The dominant feature of the plot is a bisected horizontal
figure-8 along the x axis. with the center cross of the 8 on
the origin, the small lobe to the left (negative x direction,
representing backward movement), and the large lobe on
the right (representing forward movement). Points above
the x axis represent leftward turning motion, and below
represent rightward turning. Turning naturally limits for-
ward velocity, because the forward direction changes as

Figure 4. Velocity variables for 1 million player updates
transformed into user-centered coordinates. Left: dx and
dy variables; right: 3D scatterplot of dx, dy and dz.

turning occurs. This creates the circular curve in the two
lobes of the figure-8. As turning gets sharper, forward
velocity falls to zero; this is because, for sharp turns,
players place the mouse pointer to the left or right of
the mousebox exactly on the horizontal, meaning that the
tank will only turn and not move appreciably forward or
backward. The bisector represents straight forward or
backward movement; a relatively low density of points
off of the diagonal indicates that players use intermediate
velocities and turning values relatively rarely, and that
full forward/backward movement and hard left or right
turns are the rule.

To see the effect of free-fall on movement more clearly,

the data are sent (or recorded) as they are encountered, and the
client updates the game state immediately.
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the 3D scatterplot in the bottom panel of Figure 4 was
created, in which the dx variable is rotated to be positive
toward the back of the plot and negative toward the front,
the dy variable runs left (positive) to right (negative) and
the dz variable runs top (positive) to bottom (negative).
The figure-8 is visible on the center plane, and the ring
of maximum velocity values is seen in the top plane of
the figure, representing updates immediately after a tank
has jumped, and in helical traces around a cylinder con-
taining the plot, starting from the top front and tracing
around to the sides and back of the cylinder in both di-
rections. These latter features represent the simultane-
ous changes in direction and velocity during free-fall: a
tank keeps its angular momentum, and hence spins in
whatever direction it happened to be turning once it has
jumped, until it comes into contact with a surface again.
Jump-turning is an important strategy in BZFlag for a
player to quickly change direction.

Network analysis of driving states

While the velocity variables are clearly structured, to un-
derstand navigation we also need to examine their re-
lationships in the time dimension. For this, arbitrary
thresholds were established to decide if, in a given up-
date, the tank was driving forward or backward, fast,
medium or slow, whether it was turning left or right or
non-turning, and whether it was vertically static or in
free-fall. These thresholds and their coding is given in
Table 1. Each 100 millisecond update for each player
was then coded as a four-tuple of codes for these vari-
ables, the code 4-tuples being placed in sequence as they
occurred in the movement in each individual player. The
unspawned state (“dead”) was given the special code
“xxxx” to be compatible with this system.

This coding gives thirty-six sates plus one for unspawned
(dead). The sequence of movement states for each game
was cross-tabulated with a 100 millisecond (one place)
shifted copy of the sequence, and all the games were
summed together into a single 37-by-37 cross-tabulation
of state-to-state transitions. This cross-tabulation is read-
ily treated as a basis for a simple Markovian statistical
model of state transitions, where each state-to-state pair
is treated as an independent observation. Naturally, they
are not independent, and there is a strong tendency for
certain state pairs to follow others, but this nonetheless
makes a good starting point for constructing a more de-
tailed model of navigation.

We begin by exploring the nature of the state model us-
ing network mapping. For this we use the sna package
for R (Butts, 2010). Because the states are thresholded
versions of the velocity variables, there is considerable
structure in them already that we do not want to ignore.
For this reason, we avoid arbitrary graph layouts, like the
Fruchterman-Reingold layout common in social network
analysis, and opt for a regular grid, ordered in a manner
that is easy to interpret. Since four dimensions (driving
direction, turning, velocity and free-fall/surface driving)
need to be represented in two, there is potential overlap in
node positions and compromises had to be made. Figure
5 presents this layout, where pink states represent surface
driving, green ones represent free-fall, states toward the
left or right represent left or right turning, states toward
the top represent forward driving, those toward the bot-
tom represent backward, except for the 37th state “dead”
(blue) which is located below the main set of states to en-
hance clarity (transitions to and from this state are also
lightened to clarify other connections). In addition, states
that differ only in velocity are placed a small diagonal
distance from each other.

Figure 5. Network of driving states in GU League games,
showing transitions with 2203 seconds (36.7 minutes) or
greater of aggregate duration across 7491 total hours of
driving.
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Table 1
Coding for player movement variables as navigational states.

Variable values code meaning
dx dx > 3 F forward

dx < −3 B backward
−3 < dx < 3 S stationary

dy dy > 3 L left
dy < −3 R right
−3 < dy < 3 S stationary

v = (2.5 − sign(dx)/2) ∗
√

dx2 + dy2 v > 20 f full speed
4 < v < 20 m mid speed
v < 4 z zero velocity

dz dz! = 0 f free-fall
dz = 0 m surface driving

Figure 5 and 6 present the same information, except
that in Figure 6, the “dead” state has been dropped,
and the two systems of surface driving (left panel) and
free-fall (right panel) have been plotted separately. In
these figures, the surface driving states are most heav-
ily connected to each other, centered on forward, non-
turning full velocity driving (FSfs), and backward, non-
turning, full velocity (BSfs); these two states have the
strongest self-connections apart from the dead state, in-
dicating that players tend to spend considerable time in
them. The states most connected to these two are the sta-
tionary, non-turning states with middle and low velocity
(SSms and SSzs), indicating that most driving involves
no turning. Turning does take place, of course, and di-
rect forward driving (FSfs) is connected to both left and
right forward driving (FLfs and FRfs), although transi-
tions directly between right and left driving do occur, but
much less frequently. Overwhelmingly, turning states
are connected to others in the same direction, though re-
versing direction between forward and backward driv-
ing is common (sometimes skipping the turn-only states
SLfs and SRfs). Links also exist between the backward-
turning states and forward non-turning driving state, and
between the forward turning and backward non-turning
states. These represent a common motion that players
make in order to execute a turn more quickly: rocking
forward and backward while turning hard to one side al-
lows one to execute a faster turn. This can be especially
useful for reversing direction (e.g. like a K-turn in auto-
mobile driving) or in aiming at an opponent who is ma-
neuvering around one.

Mid speed driving occurs with lower overall frequency,
but it has an interesting structure of its own. Self-
loops exist on the mid-speed, forward driving and sta-

tionary turning states, suggesting that some time is spent
in these maneuvers. The backward mid-speed driving
states have no self-loops, suggesting that they are only
transitional, and furthermore their transitions come only
from the backward full-speed driving state and go only
to stationary mid-speed turning states. There are also di-
rectional transitions to these latter states from the full-
speed backward turning states, and bi-directional transi-
tions to and from the full-speed backward driving state.
This suggests a special role for the mid-speed backward
states, which may be indicative of the mid-speed system
as a whole. In game playing terms, full-speed driving
is more convenient as it permits the player to traverse
the space rapidly, and thereby accomplish game goals
more quickly. However, some maneuvers are difficult
to achieve while driving at full speed, and slower speeds
permit more delicate coordination of driving actions.

The system of state transitions is entirely symmetrical
but for a single transition from mid-speed rightward turn-
ing (SRms) to mid-speed non-turning (SSms). This sug-
gests a possible slight right-hand bias in the system of
more delicate maneuvers. We have no reason to expect
that right handedness is more or less common among
BZFlag players than among the general population, so
a right-hand bias is not surprising in that respect. At
the same time, the entire system of transitions is remark-
ably symmetrical with respect to right and left turning,
but for this single transition, whose weight is much less
than most transitions in the system. The map itself is
largely symmetrical, meaning that opportunities for left
and right turning situations should be similarly prevalent
(as opposed to, e.g. a racing map, where laps are com-
pleted by going around a track in the same direction).
This potential right-hand bias deserves to be studied fur-
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Figure 6. Network of driving states in GU League
games, excluding free-fall, showing transitions with
491.5 seconds (8.19 minutes) or greater of aggregate du-
ration across 7491 total hours of driving.

ther.

Free-fall is a much simpler system of states than sur-
face driving, and is dominated by transitions between
the full forward, forward turning, full turning, backward
turning and full backward states, representing the rota-
tion of the tank in mid-air, as governed by the game’s
physics. The states involving either only full turning or
forward/backward motion (SLff, SRff, FSff and BSff) are

typically but not always represented in this rotation The
mid-velocity states are scarcely involved at all, with their
strongest links to themselves, reinforcing the idea that
mid-speed driving is both rarer and has different proper-
ties from full-speed driving.

Agreement of individual driving patterns

At this point, we should consider whether individual
driving patterns agree with this aggregate picture. Es-
tablishing this is a large undertaking, as there are more
than a thousand different league members represented in
the database. Members play different games at differ-
ent times of the 10-month span of the corpus, and it is
possible for skill levels to have changed. Hence, these
questions deserve to be investigated systematically and
carefully. Spot-inspection of individual players within a
game does provide some suggestion of where the answer
may lie. Consider Figure 7, in which movement patterns
from three players in the first game of the corpus are rep-
resented, with the same orientation as the bottom panel
of Figure 4.

In Figure 7, instead of scatter-points, traces are plotted,
because the updates are in natural sequence. We see the
same situation as in Figure 4, but in all three panels the
figure-8 is less clearly defined (if at all). As indicated in
Figures 5 and 6, full-speed forward and backward move-
ment in the surface-driving plane are strongly connected.
The three panels show an interesting contrast as well, re-
lated to possible handedness bias. The top panel, rep-
resenting the player labeled “Sp”,4 shows fewer traces
from the top center of the figure to the right; this player
apparently tends to jump while turning left. The bot-
tom panel, representing player “TRS”, shows somewhat
more traces from the top center to the right, suggesting
an opposite tendency to jump while turning right. The
center panel, representing player “atm” shows relatively
balanced left and right-turning jumps. Since these traces
come from players in the course of a single game, and
since small numbers of jump-turns are involved, it is pos-
sible that these observations are not fully representative.
For example, it is possible that the different players had
different opportunities for jumping, etc. At that same
time, it is clear form Figure 7 that individual players can
potentially display handedness biases, which in aggre-
gate, could account for the asymmetric transition in Fig-
ures 5 and 6.

4Player names are changed here to anonymize the players.
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Figure 7. Three players from a given match: Sp (left),
atm (middle) and TRS (right).

Discussion: Toward a statistical model

So far our investigation has been an exploration of the
transitions between driving states. The observations
made in this exploration can be posed as questions for
a statistical analysis, as follows: (a) Are the navigational
variables (direction, turning, velocity and jumping) suffi-
cient to explain the way navigational states follow them-
selves, or are there specific combinations of these that are
specially implicated? (b) What are the preferred naviga-

tional states on re-spawning (following death)? (c) Are
there navigational states (e.g. straight surface driving,
left and right turning free-fall) that preferentially lead to
death? (d) Does free-fall differ from the surface-driving?
How? (e) To what extent are left and right turning dif-
ferent, or can they be regarded as the same? (f) To what
extent is the mid-speed set of states different from the
full-speed set? (g) Is the apparent asymmetry in transi-
tions from SRms to SSms significant?

These questions, and potentially others, necessitate the
use of a statistical model. Different model structures
could be suggested, but the one that is closest to the
network visualizations used above is a log-linear model
of state-to-state transition. One version of this model is
given in (1).

ln yi, j = α + βixi + β jx j + βi, jxix j + ε (1)

The model in (1) predicts the natural logarithm of the
count y indexed by row i and column j of the cross-
tabulation used in the network visualizations. Since the
states are measured for regularly-spaced 100 millisecond
intervals, these counts represent duration or overall time
spent in a state, as well as frequency. Hence the model
will tell us which states players are more likely to spend
time in, and which states they spend more time going
between. Using the logarithm of the count makes this
a log-linear model, a member of the Generalized Lin-
ear Model (GLM) family, which is readily estimated by
most statistical software and has well-understood prop-
erties (Bishop et al., 1975; McCullagh and Nelder, 1989;
Agresti, 1996). The counts are estimated as a sum of an
overall value α plus terms for the row i, column j and in-
dividual cell i, j. These terms are composed of a param-
eter β indexed for either row, column or both, multiplied
by a variable or variables x representing row, column or
both. A final term ε represents the individual error for
each cell.

The α value is mainly related to the overall size of the
i, j entries in the table, and is otherwise not particularly
important. It is typically set to a level near the average of
the logarithms of the counts i, j. Similarly, the βi and β j

represent the overall frequency of particular states; these
matter when some states are much more or less common
than other states, but are otherwise not very interesting.
They are also the same for both rows and columns, be-
cause the overall frequencies of states is the same, irre-
spective of whether we view them shifted in time. The in-
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teresting term is βi, jxix j, which references specific com-
binations of row and column. In its full form for the
cross-tabulation of 37 states, this term would have 1369
βi, j parameters, or as many cells as are in the model; such
a term would give us a saturated model, with as many
independent parameters to be estimated as data points to
estimate them from, and would be no more economical
a description than the cross-tabulation itself. Where the
parameter is potentially interesting is if there are selected
βi, j elements which need to be non-zero; the remaining
ones can then be “pruned” from the model by setting
them to zero.

Moreover, we can use other information to classify
cells in the cross-tabulation, yielding a more economical
model. For example, if navigational states tend to fol-
low themselves, the loop transitions are important; these
correspond to βi, j where i = j. In addition, each of the
coded state labels represents four distinct variables, e.g.,
permitting us to expand the model as in (2), with respect
to turning; the model can be similarly expanded with re-
spect to the three other movement state variables.

ln yi, j = α + βi−turnxi−turn + β j−turnx j−turn+

βi−turn, j−turnxi−turnx j−turn... + ε (2)

In (2), instead of row and column terms for the specific
states (combinations of four variables), we have terms
that group a set of rows and/or columns together, based
on the value of the turning state variable (left, right or
non-turning). Note that the interaction effect for turning
has nine potential combinations: LL, LS, LR, SL, SS,
SR, RL, RS and RR; this makes it possible for the model
to represent looping in the turning variable (by testing
LL, RR and SS) independent of the other state variables.
Interactions, among the four state variable can also be
considered, so we can see how detailed a description of
navigational state is justified.

Furthermore when estimated in a GLM, all effects,
whether main or interactions effects, are estimated to-
gether so we are guaranteed that they can be indepen-
dently tested for significance, using the Wald test, where
"significant" means that the corresponding β is different
from zero, i.e., the parameter is needed for the model to
fit the data. Care must be taken to specify the variables x
with a useful interpretation in mind: a staggeringly large
number of variables can be created out of our original
four, leading to many alternative model parameteriza-

tions, most of which differ by where they locate the zero
reference point for significance tests. For the present pur-
poses, we use dummy coding, meaning that a category
variable with k categories is coded into k new variables,
each new variable representing a single category, using
the value 1, where the category is present. All other cells
are coded with 0 for that variable. Normally only k−1 of
these variables can be used, the absent one representing
the reference category, for which all remaining k−1 vari-
ables have the value zero. Dummy coding is carried out
for each value, however, and in the case of finding com-
pact statements of certain interactions, it is sometimes
helpful to move the reference category.

A log-linear model was estimated from the cross-
tabulated state transition data, given in Table 2. Be-
cause of the large N (269.7 million 100 millisecond tran-
sitions), using all of our data would tend to result in sig-
nificant findings for all parameters tested. This would
at least partly represent spurious findings; the observa-
tions are non-independent, because they come from the
same games, users, teams, etc. and they are serially cor-
related in time. For this reason the counts in the cross-
tabulation were reduced by a factor of 10,000, corre-
sponding to what we would obtain if we randomly sam-
pled one in 10,000 transitions. The values in the table
are large (mean cell value 19.7, max 10,049, min 0, total
26,966), but not too large in that at least some parameter
values test non-significant. The model in Table 2, is one
of several models run, this particular one having signif-
icance tests that allow us to answer the questions in (a)
through (g). It has a high proportion of explained de-
viance (the residual deviance is 3528.3 on 1336 degrees
of freedom; null deviance: 259866 on 1368 degrees of
freedom, meaning 98.6% of the variance is explained
by the 32 degrees of freedom in the model) suggesting
a good fit; the model fit diagnostics, however, and in par-
ticular the quantile-quantile normal plot, show a poor fit
of the residuals to a normal distribution (in particular,
the tails of the residual distribution are heavier than ex-
pected). Hence, the assumptions for this type of model
may be violated and we need to interpret it cautiously.

On the logarithm scale, positive parameter values (in
the “Estimate” column) represent more frequent states
or transitions, and negative ones represent less frequent
ones. The “Std. Error", “z value” and “p value” columns
represent the standard error of the estimate (its expected
variability), the z value (the parameter normalized by
its standard error), and the two-tailed probability of the
Wald test of the z value. Chiefly the Estimate and p value
columns are interpreted; the latter indicates whether
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Table 2
Log-linear model of state transitions.

Estimate Std. Error z value p value
α -1.65863 1.03444 -1.603 0.108846

Main dead 5.35324 1.13946 4.698 2.63e-06 ***
effects Forward -0.69935 0.04901 -14.270 < 2e-16 ***

Backward -0.84077 0.04884 -17.215 < 2e-16 ***
Non-turning 0.17516 0.13327 1.314 0.188746
full velocity -4.18458 0.16292 -25.686 < 2e-16 ***
mid velocity -4.98555 0.12316 -40.482 < 2e-16 ***
zero velocity -3.73870 0.17305 -21.605 < 2e-16 ***
free-fall 1.38113 1.01741 1.357 0.174624

loops dead 5.52072 0.54438 10.141 < 2e-16 ***
Forward 2.73282 0.04532 60.305 < 2e-16 ***
Backward 1.69165 0.04890 34.596 < 2e-16 ***
Left 3.45349 0.12108 28.522 < 2e-16 ***
Right 3.40359 0.12125 28.071 < 2e-16 ***
Non-turning 3.92049 0.07151 54.827 < 2e-16 ***
Mid velocity -2.45709 0.09479 -25.921 < 2e-16 ***
Free-fall 4.84143 0.07074 68.441 < 2e-16 ***
Surface driving 6.62821 1.01661 6.520 7.04e-11 ***
From SRms to SSms -13.00469 1275.75387 -0.010 0.991867

death Left -1.05686 0.55523 -1.903 0.056979 .
(from) Right -1.06102 0.55467 -1.913 0.055762 .

Full velocity 2.36034 0.49208 4.797 1.61e-06 ***
Free-fall -2.99491 1.08474 -2.761 0.005764 **

spawning No turn -0.28173 1.12698 -0.250 0.802600
(to) Left -14.01415 347.87090 -0.040 0.967866

Right -14.03319 348.00766 -0.040 0.967835
Stationary (not moving) -1.45177 0.39907 -3.638 0.000275 ***

Other No turn, free-fall mid/zero 0.42750 0.16551 2.583 0.009796 **
No turn, mid velocity, free-fall 1.85632 0.12671 14.650 < 2e-16 ***
No turn, zero velocity, free-fall 1.49491 0.15980 9.355 < 2e-16 ***
Left, full velocity, free-fall -0.70234 0.08615 -8.152 3.57e-16 ***
Right, full velocity, free-fall -0.65485 0.08575 -7.637 2.23e-14 ***
No turn, full velocity, free-fall 2.30030 0.08840 26.022 < 2e-16 ***

a particular parameter should be interpreted, when its
value is smaller than some criterion, generally 0.05.5 In
Table 2, different significance levels are flagged differ-
ently: 0.1 is indicated with a dot (.), 0.05 with a single
asterisk (*), 0.01 with two asterisks (**), and anything
less than 0.001 with three (***).

The parameters in Table 2 are reported in six groups: the
α value, main effects, interactions representing loops, in-
teractions involving death, transitions involving spawn-
ing (from death to alive), and other interactions. The
Other category is actually much like main effects, be-
cause they only refer to the identities of the states them-
selves, not to transitions among the states; they represent
combinations of the navigation variables that are either
more or less frequent than expected by chance.

Among the main effects, we find that the "dead" state
has a very high positive value, meaning that it is far

more common than the other states. This is to be ex-
pected, as none of the other variables are relevant to the
dead state, whereas the “alive” state is partitioned into
36 navigational states. This means that most cell counts
will tend to be considerably lower than those involving
“dead”. Most parameter values among the other main
effects are negative, meaning that their frequencies are
relatively low, with the exception of turning/non-turning,
which tested non-significant (left and right turning were
also tested non-significant in separate tests) and free-fall,
which is significantly positive, but not particularly large.
All of these tendencies need to be viewed in terms of the
reference category, which is surface driving and sitting

5Often times, smaller criterion values are used, especially
Bonferroni-corrected values, when large numbers of tests are
conducted, as they are here. We do not do this formally here,
but note that the values for which significance is claimed are
generally far smaller. Larger values approaching the criterion,
such as 0.0058, are flagged as such and interpreted with cau-
tion.
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still, where at least some variable value is distinct across
the transition. In other words, these estimates specifi-
cally exclude loops, which are the majority of the state
transitions, and are addressed by interaction parameters.

As main effects, some of the variables have significant
co-occurrences which need to be mentioned (the "Other"
parameter set); all of these involve free-fall, in which the
physics of the game are implicated. Three parameters
tell us that non-turning is more common with mid and
zero speed free-fall, while the other three tell us that full
velocity free-fall especially favors non-turning, with re-
spect to both left and right turning. Of the six parameters,
one (No turn, free-fall, mid/zero) is partly redundant and
also somewhat near to the criterion value of significance.
Hence, it appears that the significant co-occurrence of
navigational variables is dictated by the game physics,
and not navigational choice, although there may be a
preference for non-turning jumps. Again, we need to be
cautious, as much of the time spent in turning jumps is
likely to be found in the loops, which are treated in inter-
actions.

Loop transitions, i.e., those involving the same value of
one or more variables, have very strong effects. However,
no combinations of navigation variables were found to
have significant interactions in loops, in spite of testing
numerous such interactions. Hence, the navigation vari-
ables have the strongest tendency to be the same across
any state transition, but there is no reason to treat any
combination of navigation variables as special (e.g. hard-
turn forward driving, etc.). The dead-to-dead loop transi-
tions have a high parameter value, but this is not too sur-
prising as there is little one can do while dead other than
spawn, and the game physics sets a minimum (generally
about 2 seconds) respawn time.

Looping in forward movement is favored, as is back-
ward, but less so; here the relevant reference category is
stationary (or barely moving), so this suggests that play-
ers generally chose movement over remaining still, and
preferentially forward movement. Left and right turning
have high and nearly identical values; they are not signif-
icantly different from each other, but aggregating left and
right together in the loops would inappropriate, because
left and right turning do not flip freely back and forth.
Free-fall has a high value, again implicating physics, but
surface driving is higher, meaning that players on the sur-
face tend to spend more time there as opposed to jumping
at every possible point.

Among the velocity variables, mid-velocity is the only

significant parameter, with a moderate negative value,
indicating that mid-velocity is less likely to loop than
other navigation variables. In other words, mid-velocity
is probably mostly transitional between full and zero ve-
locity (or vice versa). The one apparent left-right asym-
metry we noted in the network, from SRms to SSms,
was tested as a separate interaction. Not only does this
transition have a large negative value, it is also clearly
non-significant, meaning that when other factors are con-
trolled for, there is no evidence for any apparent handed-
ness asymmetry in the movement data.

Transitions involving death and spawning were similarly
tested. From the model, left and right turning are not sig-
nificantly associated with death or spawning. Full veloc-
ity motion is (it increases a player’s chances of dying),
while free-fall seems to reduce one’s chances of dying,
contra the received wisdom of GU players that it is bet-
ter to remain on the surface (and dodge shots) than it is to
jump. Quite possibly, players learn when to jump better
than how to dodge; the tendency to die in full forward
motion also suggests a failure in dodging. From spawn-
ing, players tend to spawn in a stationary state, whereas
neither turning nor any kind of motion appears to be fa-
vored. Of course, these assessments take place within a
time window of one tenth of a second; it may be nec-
essary to look at a larger time window to notice other
trends.

Conclusions

The exploration of navigation states in GU BZFlag
games reveals a number of tendencies, many of which
are directly relatable to the physics of the game. Over-
whelmingly, with a few exceptions, the navigational vari-
ables of a BZFlag player, which are directly related to
interface choices, appear to be independent, except when
governed by game physics. Otherwise, the primary navi-
gational pattern we find is that players tend to remain in a
navigational state for some time, irrespective of physics.
We see this especially with forward and backward mo-
tion and turning. Preliminary support for some apparent
tendencies related to player choice, such as handedness
in left-right turn bias, appears to melt away in the sta-
tistical model. However, much more can be done in the
framework illustrated by the approach taken here.

First, we have limited our attention to navigational states
across a tenth of a second time window. With respect
to planning and execution of tactical plans, this is a very
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short period of time; any sequence of actions having the
effect of advancing the goals of the game are likely to
be carried out over a longer time frame, encompassing
seconds, tens of seconds or even minutes. Hence we
need to expand the time-scope of the model consider-
ably. While in one sense, this could be done by con-
sidering sequences of three or more navigational states,
the combinatorics of this approach makes it potentially
cumbersome (e.g., for the four state variables, we could
be investigating over 50 thousand combinations of tran-
sition pairs, instead of 1369 transitions). To expand up
to even a full second would require a different approach.
Alternatively, since it appears that the navigational vari-
ables are both independent and tend to loop within nav-
igational states, we could focus attention on the points
when these variables change value, and the durations of
the states between them. This would require a somewhat
different statistical approach from that used here.

Another way the model could readily be expanded relates
to the potential for individual variation, as would be espe-
cially important in the handling of handedness biases and
personal navigation styles. These questions are normally
addressed through incorporating random effects in the
model, as contrasted with the fixed effects we have ex-
amined here. Fixed effects are mostly used for variables
controlled by experimental conditions, whereas random
effects are needed for variables whose values arise in the
process of analysis, and through which other variables
may be correlated. An example of this is the individ-
ual player: different players participate in each match,
some in several matches; any instance of a particular tank
driving, turning left or right, jumping, etc., is related to
whatever player is being observed. Each of the effects
observed here could potentially be different for different
players (e.g. they may have different average latencies
between jumps, turns, etc.). We could partly address
this concern by creating networks like that in Figure 5
or models like that of Table 2 for each individual player;
random effects go beyond this by allowing us to compare
across the individual models and make generalizations.
Mixed-effects modeling, with both random and fixed ef-
fects, is increasingly common in social science research,
and statistical packages that use mixed effects in GLMs
are now readily available. Other effects that could be
introduced as the model is expanded include teams and
in-game events such as collisions with obstacles (or po-
tential collisions) player death, flag capture, etc.

Returning to the questions that initiated our study, we
see that, in the case of the GU games of BZFlag, play-
ers’ navigation of the MOG is strongly governed by the

physics and controls available to the player. While the
user interface in BZFlag is designed to be simple, os-
tensibly to make learning it easier, we find that in being
so, it heavily constrains player navigation. Nearly every
pattern we can identify in the system of state transitions
involves a physical constraint of the game, be it maxi-
mum velocity, free-fall or spawning latency after death.
When given a choice, players appear to always move at
the physical limits of the system, a situation that is un-
like movement and navigation in the “real world” that
the system ostensibly models. Moreover, given that nav-
igation is essential to game objectives, players are effec-
tively forced to contend with learning the controls and
simulated physics system prior to being able to accom-
plish other goals or learning. This situation raises im-
portant questions to be answered by designers of serious
games. If a 3D virtual environment is to be employed
in a serious game, to what extent can it be expected to
contribute to the learning goals of the game, and to what
extent could it be an encumbrance? Just as flag capture
can easily be described in terms of driving between the
players’ home and opposing bases, scavenger hunts, such
as those employed in Quest Atlantis Barab et al. (2005),
and other game-world based learning tasks have an inher-
ent navigational component. More elaborate movements
systems, such as coordinated mouse-keyboard systems
allowing strafing and/or mid-air directional changes (as
found in Quake, Second Life, etc.), should be studied us-
ing the same approach as employed for BZFlag to asses
whether these systems pattern differently. At the same
time, the potential learning overhead needs to be con-
sidered, as well as the relation of physics to the learning
goals of the game. A trainer for operators of a specialized
piece of equipment has a clear need for a game physics
that closely resembles the actual circumstances in which
that equipment is employed. Abstract goals, such as co-
operative teamwork, or mathematical and geometric rea-
soning may not be so constrained, and the imposition of
an arbitrary system of physical constraints is potentially
a serious encumberance to the learning goals.

While the approach of the current research is not able to
make strong statements regarding the role physics in its
contribution to learning goals, it does provide a frame-
work for statistically investigating the nature of naviga-
tion in a 3D game. This framework is readily adapted to
other data of this nature from other games, with differ-
ent physics, movement controls and game goals. Using
this framework, it will ultimately be possible to answer
questions such as those posed immediately above. These
questions will be pursued in future studies as the methods
and approach to navigation presented here are developed.
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