
Visualizing Game Dynamics 1

Running head: VIZUALIZING GAME DYNAMICS

Visualizing Game Dynamics and Emergent Gameplay

Joris Dormans, MA

School of Design and Communication,

Hogeschool van Amsterdam

Visualizing Game Dynamics 2

Abstract

This paper aims to explore a method of visual notation based on UML (Unified

Modelling Language) to help the game designer understand the dynamics of his or her

game. This method is intended to extend and refine the iterative process of designing

games. Board games are used as a case study because emergence in board games is often

easier to study than in computer games. In order to understand emergence in games, some

concepts from the science of complexity are discussed and applied to games. From this

discussion a number of structures that contribute to emergence are used to inform the

design of the UML for game design.

Introduction

There is beauty in games. For some the beauty of games is directly related to dazzling

visuals or emotional emergence. Personally, I am fascinated by the rich gameplay so

many games offer using only a handful of rules. The age-long tradition of Go is

testimony to power and beauty of this richness. Every session of play becomes a

performance; a ritualized dance that is focused and confined by the game’s rules and

premise, but which is never the same twice. Mine is an aesthetic appreciation of the

freedom and possibilities set up within the logical game space within the magic circle of

the game (cf. Huizinga 1997: 25).

Unfortunately this type of beauty is very hard to create. The richness and

complexity of gameplay does not directly translate to detailed and complex rules. On the

contrary, games that offer the richest experience often consist of the simplest rules. The

gameplay potential offered by a classic game such as Checkers, or a simple computer

game such as Boulder Dash, does not become immediately apparent from a study of their

rules. On similar ground, how does one explain the enormous difference in gameplay

potential of Tic-Tact-Toe and Connect Four when their rules do not seem to be so very

different at all?

These days, many game designers agree that, at least in certain types of games,

gameplay is an emergent quality of the game system (Bateman & Boon 2006, Adams &

Rollings 2007, Fullerton 2008). Emergence is a term taken from the science of

Visualizing Game Dynamics 3

complexity and used to indicate apparently non-deterministic behavior of a system

consisting of many parts that cannot be directly related to the deterministic rules that

govern the system. Classic examples include John Conway’s ‘Game of Life’, a cellular

automaton with only three rules that can produces chaotic, sometimes life-like, behavior

(Ball 2004: 125-126). Emergent behavior is notoriously difficult to predict and can

uncomfortably feel like magic (Bedau 1997: 378). A defining characteristic of emergence

is that the most convenient way to find out what happens in an emergent system is to

simulate it, or have the system run its course (ibid. 379). This explains why using

iterative process with many prototypes is the most effective way to design games.

This paper aims to explore a method of visual notation based on UML (Unified

Modelling Language) to help the game designer understand the emergent dynamics of his

or her game. This method is not intended to replace the iterative design process. Rather it

is intended to possibly add an extra quick iteration and to improve the accuracy of the

information gained from each iteration, and thereby to increase the effectiveness of

interventions of the game designer between iterations. Board games are used as a case

study because emergence in board games is often easier to study than in other types of

games. The complexity of the rules in board games is simply more limited than what is

possible in a computer game. In addition, the rules of a board game are always explicit;

nothing is hidden behind layers of code. Both these aspects facilitate the study of

successful examples of game design to identify patterns that contribute to their success

and quick experimentation with the structural features that contribute to the emergent

gameplay.

Related Research

This is not the first attempt to get to grips with the elusive nature of gameplay using

diagrams and patterns. The work of Staffan Björk and Jussi Holopainen (2005) has a very

similar aim. They have identified and described a large number of patterns in game

design. These are intended to help the designer analyze successful games, understand his

or her own game, and to inspire new designs. However, their focus is on the activities of

the player, whereas my focus is on structural aspects of the game system. As a result the

approach presented here intends to focus more on game mechanics. My aim is to find the

Visualizing Game Dynamics 4

‘atomic particles’ that can be used to create and describe many different patterns. A step

which seem absent from Björk and Holopainen’s work. What is more, the UML I propose

is a visual notation. It provides the game designer with a gestalt of his design that is less

abstract than the purely verbal patterns of Björk and Holopainen’s work. In the end, I

think that their game design patterns and my UML notation complete each other.

Expressing their patterns in game design UML would be a great test for the

comprehensiveness of the latter.

 This paper has more in common with Raph Koster’s research in game diagrams.

His focus is also on atomic particles that make up the game experience; on what he calls

the ‘ludemes’ and devising a graphical notation for these (Koster 2005). However, there

are two important differences between his approach and mine. First, again, I focus less on

the game experience and more on the system that facilitates this experience. Second,

Koster’s main method is that of reverse engineering (ibid): he looks at games and tries to

find patterns, whereas I work from the hypotheses that emergence has a number of key,

structural features which the notation must be able to express first and foremost.

Although I will complement and test the results with the study (or reverse engineering) of

a number successful games.

Neither am I the first to use UML for the design of games. UML is a modeling

language designed for software engineers, and as many games are computer programs,

UML has been used to design the software of games. However, my prime interest is not

in the software, but in the conceptual complexity of games. M.J. Taylor et al. (2006)

extend UML use-case diagrams to describe game-flow, the experience of the player.

Their focus is on the play session and the progression of the player through the game. As

a result their approach is very different from the approach presented in this paper. Their

diagrams represent the linear, or branching, experience of play, not the structural

complexity of game systems.

Finally, I did come across an example of UML describing games. Perdita Stevens

and Rob Pooley use class diagrams, collaboration diagrams and state machines diagrams

(three different types of UML diagrams) in their educational case study of modeling the

structure of Chess and Tic-Tac-Toe with standard UML (1999: 178-189). However, their

intention is to explain UML to students, not to study games. And though their approach is

Visualizing Game Dynamics 5

valuable, I do not think it goes far enough to be of any real use for game design. Standard

UML diagrams are not always suited to express the particularities of games, and are not

really designed to visualize emerging properties of complex system.

The Structure of Emergence

This paper departs from the premise that the notion of emergent behavior in complex

systems is a suitable framework to study games. The relation between games and

emergence has been discussed by many game designers and researchers (see for

examples: Smith 2001, Salen & Zimmerman 2003, Juul 2005, Sweetser 2006, Adams &

Rollings 2007). With both types of systems the whole is more than the sum of their parts:

it is hard (if possible at all) to predict the behavior of the whole by just looking at the

behavior of the parts. While, the active agents or active elements in a complex system can

be quite sophisticated in themselves, they are usually represented by rather simple

models. Even when the study is about the flow of pedestrians in different environments,

great result have been achieved by simulating them with only a few behavioral rules and

goals (Ball 2004: 131-147). Similarly, the elements that make up games are can be a lot

more complex than the elements of a typical system studied by the science of complexity,

but some games (such as Go and Chess) are famous for generating enormous depth of

play with relative simple elements and rules. The active substance of these games is not

the complexity of individual parts, but the complexity that is the result of their many

interactions. The main assumption of this paper is that the particular configurations of

elements into complex systems that contribute to emergence are also potential valuable

sources of gameplay. For a game designer this means that understanding the structural

characteristics of emergent systems in general, and in his or her games in particular, is

essential knowledge.

One of the simplest systems that show emergent behavior is the particular class of

cellular automata studied by Stephen Wolfram. His extensive study has revealed three

critical qualities of such systems: 1) They must consist of simple cells which rules are

defined locally, 2) the system must allow for long-range communication, and 3) the level

Visualizing Game Dynamics 6

of activity of the cells is a good indicator for the complexity of the behavior of the

system.

The cells of cellular automata are relative simple machines that abide only to local

rules. The algorithm that defines their behavior is not complicated and takes input only

from its immediate surroundings. The easiest way to create a cellular automate is to

design a simple state-machine that takes into account the states of its immediate

neighbors. Without such input all cells would behave individually, and system-wide

behavior would not be possible. When a cell takes input from other cells that are beyond

its immediate surroundings, the behavior quickly becomes chaotic (a state beyond

complex behaviour that is generally undesirable).

Despite locally defined and operating rules communication between cells must

also facilitate long-range communication in the system. This means that long-range

communication cannot be direct and takes time to spread through the system. Systems

that show pockets of communication with little or no communication between the pockets

will show less complex behavior than systems in which such pockets do not occur or are

less frequent (Wolfram 2002: 252). Connectivity is a good indicator of long-range

communication in the system. A special case of long-range communication is feedback,

in which a cell or group of cells produce signals that ultimately feed back into its own

state. Long range communication travel over long distances through the system or,

alternatively, through time and produce delayed effects. As we shall see below feedback

is very important in games.

The number of cells that are active (cells that change their state) is important for

the behavior of the system as a whole. Complex behavior occurs mostly in systems with a

lot of active cells (ibid. 76).

Cellular automata show us that the threshold for complexity is surprisingly low.

Relative simple rules can give rise to complex behavior. Once this threshold is passed

introducing extra rules does not affect the complex behavior as much (Wolfram 2002:

106).

Visualizing Game Dynamics 7

In another study of emergence, Jochen Fromm builds a taxonomy of emergence that

consists of four types of emergence. These types can be distinguished by the nature of

communication, or feedback, within the system (Fromm 2005).

In the simplest form of emergence, nominal or intentional emergence (type I),

there is either no feedback or only feedback between agents on the same level of

organization. Examples of such systems include most man-made machinery where the

function of the machine is an intentional (and designed) emergent property of its

components. The behavior of machines that exhibit intentional emergence is

deterministic and predictable, but lacks flexibility or adaptability.

Fromm’s second type of emergence, weak emergence (type II), introduces top-

down feedback between different levels within the system. Flocking is an example he

uses to illustrate this type of behavior. A flock-member reacts to vicinity of other flock-

members (agent-to-agent feedback) and at the same time perceives the flock as a group

(group-to-agent feedback); a flock-member perceives and reacts to two different scales

with in the system. When the top-down feedback within the weak emergent systems is

negative the emergent behavior is stable. When the top-down feedback is positive the

emergent behavior is instable.

One step up the complexity ladder from weak emergent systems we find systems

that exhibit multiple emergence (type III). In these systems multiple feedback traverses

the different levels of organization. Fromm illustrates this category by explaining how

many interesting emergence can be found in systems that have short-range positive

feedback and long-range negative feedback. It propels the appearance stripes and spots in

the coat of animals and the fluctuation of the stock-market. The Game of Life is also an

example of this type of emergence. The Game of Life can easily be shown to include

both positive feedback (the rule that governs the birth of cells) and negative feedback (the

rules that governs the death of cells). The Game of Life also shows different scales of

organization: at the lowest end there is the scale of the individual cells, on a higher level

of organization we can recognize persistent patterns and behaviors such as gliders and

glider-guns.

Fromm’s last category is strong emergence (type IV). His two main examples are

life as an emergent property of the genetic system and culture as the emergent property of

Visualizing Game Dynamics 8

language and writing, although one could question whether in both case one follows from

the other, or whether these have evolved in unison and emergence might not be the best

way to describe their mysteries. In any case, strong emergence is attributed to the large

difference between the scales on which the emergence operates and the existence of

intermediate scales within the system. Strong emergence is multi-level emergence in

which the outcome of the emergent behavior on the highest level can be separated from

the agents on the lowest level in the system: a Turing Machine can be build from the

Game of Life, but also in other systems. The causal dependence between emergent

behavior of a Turing Machine in the Game of Life and the game of life is minimal.

From this brief discussion a number of important observations on the nature and structure

of emergence come forward. Emergent systems must consist of many elements that act

more or less independently. A sufficient level of activity is required; a system with only

few active elements tends to be too stable and predictable. Communication (or

interaction) must exist between these elements at a local scale and this local

communication must indirectly enable long range communication. Feedback, a form of

communication where information and actions are fed back to the source, play a crucial

role in emergent behavior, without feedback there is no emergence and stronger types of

emergence only exists in systems with multiple feedback. Finally, emergent systems

often show different scales of organization, with communication and feedback traversing

between these scales. A UML notation for games that aims to represent the emergence

must be able to visualize these important elements.

UML for Games

UML describes a collection of different types of diagrams. Of these, class diagrams,

collaboration diagrams and state machines diagrams seem to be to most relevant for

games. Perdita Stevens and Rob Pooley use these in their educational case study of

modeling Chess and Tic-Tac-Toe with standard UML (1999: 178-189). State machines

diagrams are very good at describing the inner workings of game objects or classes, just

as state machines are a good technique to implement most game objects. Class diagrams

are good tools to describe game elements, however, the complexity of a game ideally

Visualizing Game Dynamics 9

does not come from its number of classes but from the number of ways their instances

can be combined in a complex system. After all, most cellular automata describe by

Wolfram (see above) consist of only one class of object. Collaboration diagrams show the

interaction between objects, but are generally not specific enough to show the exact

nature of communication.

To resolve this problem I chose to follow the lead of Bran Selic and Jim

Rumbaugh (1998) who extended the UML collaboration diagrams by introducing

capsules, ports and connectors. In their methodology, capsules are complex objects that

interact with their surroundings through ports. Ports are connected by connectors that

relay information between the capsules. Capsules are the central construct in their

approach. The inner structure of a simple capsule is represented by state machine that

communicates through the capsule’s ports. More complex capsules are represented by

subcapsules that are nested within the structure. Figure 1 shows a simple UML diagram

representing a typical cellular automate in full detail (on the left) and in a collaborative

structure (on the right).

Figure 1 – UML for Wolfram’s cellular automata

This approach forms a good basis to model games. It has the advantage of showing types

of objects, showing interactions between objects (or their instances), and allows us to

depict different scales (capsules and subcapsules). However it lacks in the representation

of the nature of communication and feedback within the system. In games

communication between elements does not only indicate flow of information, but also

flow of resources. In addition, games work with very narrowly defined actions. The ways

a player or an element can act upon another is limited and governed by the game’s rules.

Visualizing Game Dynamics 10

Finally, the difference between positive and negative feedback should be stressed, as

these have a different impact on the behavior of the game. Below, I will discuss these

three points in more detail.

Most games have an internal economy of resources. A lot of games (from board games

such as Monopoly to simulation games such as SimCity, and from strategic games such as

Warcraft to MMORPGs such as World of Craftcraft) incorporate a mechanism for money

and other economic resources. But even in shooter in which money plays no role,

concepts such as ammunition, energy and health-points can be, and often are, considered

as vital resources. In these games it is important to identify where resources flow into and

out of the game, and how elements can exchange resources between them (cf. Adams &

Rollings 2007: 331-340). Technically speaking, the flow of resources is just another form

of communication within a system and therefore can be represented by normal

connectors. Yet, resources play often such a vital role in balancing a game that it is best

to distinguish resources from normal information, in some cases it helps to differentiate

between the different type of resources in the game.

Another argument for distinguishing resources from information is that is some

ways resources act more like real-life objects than pure information does. Resources can

be pooled and are not as easily duplicated. When resources flow from one capsule to

another, they actually disappear from the fist object and arrive at the second. By using a

special notation to capture these effects of communication with resources, it is no longer

necessary design other structures to model the same behavior (such as tokens in Petri-

nets). Distinguishing between information and resources in this way makes the model

much clearer and less complex.

In the UML I propose I distinguish between the flow in information from flow of

resource by using white ports and dotted lines to indicate the first and black ports and

continuous lines to indicate the latter. In addition pools of resources, which can be

thought of as special instances of state machines, are represented by black rounded

rectangles (see figure 2).

Visualizing Game Dynamics 11

Figure 2 – UML to distinguish between information and resources, showing a capsule

with a resource pool and (unspecified) information about the pool feeding into the

capsule’s state machine

Actions are an important formal aspect of games. Actions determine what how objects,

and by extension players, can act and interact. Most game objects have only a limited set

of actions that guides the players’ behavior. The challenge of most games comes from

achieving their goals with the operations allowed by its procedural rules; moving a ball

past a goal area is easy, using only your feet makes it challenging (cf. Fullerton 2008: 25-

26).

Actions are represented by rounded rectangles and distinguished from state

machines by a name followed by parentheses that denote their similarity to functions or

methods in computer code. Some actions tie into game’s internal economy or have the

power to create or destroy new game objects. As this has a clear effect on the dynamic of

the system I have come up with a set of symbols and notions to denote these special

instances (see figure 3). The concepts of sources, drains, converters and traders are taken

from Adams and Rollings (2003: 332-334). A source produces a particular resource, a

drain destroys a resources, a converter converts one resource into another, while a trader

simply facilitates the exchange resources. The difference between a trader and a

converter is that the total number of resources does not change as a result of a trader,

while with a converter X resources are destroyed to produce Y resources of another type,

where X does not have to equal Y.

Visualizing Game Dynamics 12

Figure 3 – UML for internal and external actions, showing a capsule that can generate a

resource and for which a player action to destroy the capsule is defined. Curved lines

imply hierarchy or action that works upon an object. The same capsule is shown twice

(the shorter nation on the bottom implies the more explicit notation on top).

As we have seen feedback plays a vital role in emergence. Many games have multiple

positive and negative feedback mechanisms that are responsible for the way competition

between players or the players and the game evolves. When analyzing games it is

necessary to be able identify positive and negative feedback. In the UML we use

feedback becomes apparent through actual loops in the diagrams. In order to make

feedback loops more visible I use plus and minus symbols to mark opportune connectors

(see figure 4).

Figure 4 – UML showing positive and negative feedback

To illustrate the use of UML for games I have drawn up a diagram for Tic-Tac-Toe and

on for Connect Four (see figure 5, the game state capsule evaluates whether or not a

Visualizing Game Dynamics 13

player has won). As already mentioned, the rules of both games are quite similar, but

there is a world of difference between the quality and depth of their gameplay. Tic-Tac-

Toe is easy and deterministic, once both players have figured out the game they will

always tie. On the other hand, the gameplay offered by Connect Four is considerably

richer. Playing this game is not as straight forward as players can employ different

strategies to trick their opponents. The diagrams of these games differ at two important

points: Connect Four has a layered structure with rows consisting of squares, and where

the communication in Tic-Tac-Toe flows in only one direction, the communication in

Connect Four includes a feedback loop (the information of which squares have been

occupied feeds back into the action of occupying the next square of a row). As we have

seen, both of these structural characteristic play an important role in emergence.

Figure 5 – UML for Tic-Tac-Toe (left) and Connect Four (right).

Case Study: Power Grid

Power Grid is a popular game that has been well received by a critical audience of board

game enthusiasts. The current success and popularity of Power Grid can be largely

understood as a direct consequence of its clever game design, in which most of the most

important game elements seem to follow rules defined locally, but allow for many

interactions; it fits the view games as complex systems particularly well.

In Power Grid the players make money by supplying electricity to cities in

Germany or the United State (depending on which side of the board is used). The players

need to balance three important aspects: investing in their power grid to connect more

cities on the board, investing in power plants to increase their power production, and

Visualizing Game Dynamics 14

buying fuel from a dynamic market (see figure 6). Power Grid uses almost no chance

mechanisms. There is some randomness in the initial conditions. But most rules are

designed to reduce randomness and to even out the effects of the initial condition. Still,

Power Grid is a very dynamic game: two sessions with the same players can produce

distinctly different effects. In one session a particular type of fuel might be in available in

abundance while those same resources are strained in the next session.

Figure 6 – Power Grid’s power plants and board with fuel market

Negative feedback plays an important role in Power Grid. At the start of every round, the

turn-order is established by the relative progression of the players. The player who has

connected the most cities is first, while the one with the least is last. Frequently, two or

more players have the same number of players, in which case the single highest base

value of their power plants determines who is first and last. Being in the lead is no

advantage. The leading player will need to bid on weaker plants first, buy resources last,

and expand his grid last. The effects of this negative feedback are so great that in general

it is best not to go far ahead of the pack during the beginning and middle phases of the

game.

Closer inspection of Power Grid reveals that most of the game’s rules operate on

a very local level. For example, all the power-plants have a base value, a formula that

dictates how much fuel it can convert in how much power during a turn (expressed in the

Visualizing Game Dynamics 15

number of cities it can provide power to), and storage capacity that is directly derived

from this formula (a plant can store twice the fuel it can convert in a single turn). The

rules of the power plants interact with other elements: the number of cities it can supply

is relevant for, but not directly connected to, the number of cities the player has

connected to his grid. A plant’s storage capacity can be used to influence the fuel market

by creating strategic reserves and driving up the price for other players. The inclusion or

exclusion of certain plants or certain type of plants (defined by the type of fuel they

process) has an interesting effect of the game in its whole. The relative value of plant that

runs on coals is determined by the available coal on the market, its absolute capacity, the

influence it has on the turn order, and distribution of other coals plants among the rest of

the players. It is fairly easy to understand the elements that make up this equation, yet

hard to estimate its outcome. Just as it is fairly easy to understand how the power plants

work, yet it takes some experience to master the dynamism a plant might cause. Even

elements of Power Grid, such as the turn-order, which at a first glance seem to dictate the

game’s dynamic from the top down, have rules that mostly operate on a local level and

are not connected to many other elements.

Figure 7 – UML for Power Grid

Visualizing Game Dynamics 16

Figure 7 is a schematic representation of Power Grid using game UML. Figure 7 is not

complete; it leaves out considerable detail. It represents the board, the mechanisms that

govern the market for new power plants, and the mechanisms that determine the game’s

progression through three different phases as state machines without elaborating further.

However, all the mechanisms of these elements have no direct impact on other elements

of the games. Most of the possible lines of communication in the system are made visible

in the schema, and are sufficient to explain the game’s characteristic dynamism.

What stands out from figure 7 is that the relative low number of connections

between the elements. Even players are not connected directly with one and another.

Competition is only possible because the players all interact with the same board and the

same markets. Yet, as became apparent from the description above, the system has

enough connectedness and communication for all individual elements to influence each

other indirectly. In short Power Grid is an excellent example of a system with mostly

local rules that still facilitate long-range communication. At the same time there is

considerable activity within the system. The number of cells that are active (each player

has up to three power plants) is relatively high, matching another important design

criteria for complex behavior described by Stephen Wolfram (see above).

From figure 7 the delicate feedback structure of Power Grid also comes forward.

The game is driven by a main loop of positive feedback in which money is used to buy

fuel that is in turn converted in more money (if the player plans correctly). This loop

ensures that as the game progresses the players gain more money and resources. Its

efficiency determines how well the player does in the game. Then there are two positive

feedback loops that improve the efficiency of the main loop, but which also feed into the

game’s main negative feedback mechanism: turn order. Connecting more cities allows

the player to make more money, but also put him ahead of other players. This means that

her fuel and new connections will be more expensive, and good plants become less

accessible to her. Buying more efficient power plants ensures that more cities can be

supplied with less fuel, but also puts the player ahead of other players with the same

number of cities; having the best (most valuable) power plant can occasionally be very

inconvenient. This particular configuration of positive and negative feedback loops,

ensures resources pile up and the game is driven towards its conclusion, yet it makes it

Visualizing Game Dynamics 17

hard for a player to get to far ahead of the others without interfering too much with the

main cycle (i.e. the game never drags on). If Power Grid has one problem it is that is

feedback mechanisms are rather slow (one must invest in a system that feeds back into

the main loop, to make the latter more effective). This makes it hard for an inexperienced

player to assess the effectiveness of her actions over time. In turn, this makes the game

somewhat difficult to learn, or, worse, can falsely lead players to believe that their actions

are trivial.

Structural Game Design Patterns

The detail shown in figure 7 is not always necessary to analyze games. For quick analysis

a short hand version of the same diagram can be sufficient. Figure 8 shows a diagram of

Power Grid that shows less detail and brings forward the game’s internal economy. In

this diagram objects are still shown, but procedures are only implied by their symbols and

the flow of different resources is color-coded.

Figure 8 – Power Grid in short hand UML

We can go even further. Figure 9 shows only the feedback mechanisms of Power Grid.

This diagram reveals game design patterns that can be generalized from the game. These

patterns are shown in Figure 10 and discussed below.

Visualizing Game Dynamics 18

Figure 9 – Feedback structure in Power Grid

Figure 10 – Game design patterns distilled from Power Grid

At the heart of Power Grid is an engine (pattern e). An engine is a particular kind of

feedback loop that creates a surplus of resources. In Power Grid the engine consists of

the feedback loop between the fuel market and a player’s power plants. The extra money

the engine creates can be reinvested to increase the efficiency of the engine by connecting

more cities or by buying better plants. But both these feedback loops are dual feedback

loops (pattern c): they produce both negative and positive feedback. Finally the engine

uses a controlled feedback loop (pattern d): investing more money does not necessarily

lead to more resources as the amount of available resources is dictated by the game state,

not by the amount of money the player has. In addition buying resources drives up the

price for resources: it is a natural stop (pattern f). It dampens the effect of the positive

feedback in the engine, and grows stronger when the strength of the positive feedback

increases. The crucial difference between a stop (pattern f) and dual feedback (pattern c)

is that a stop can only dampen and ultimately stop the positive feedback whereas with

dual feedback the negative feedback can grow stronger than the positive feedback. It is

also my assessment that for players the effect of a stop is in general easier to predict than

the effect of dual feedback.

The possible patterns are be no means all identified by our analysis of Power

Grid. Although the size patterns identified can be used to build many constructions, I

Visualizing Game Dynamics 19

expect there to be plenty more. To me it is no surprise that in their research Staffan Björk

and Jussi Holopainen (2004) have identified several hundred of patterns, and even their

list is not complete. In fact, I doubt that a definite list could ever be produced, as the

possible combination of functions and connectors is probably infinite, even though many

would just be variations on basic themes and consist of the same atomic elements. Still

the identification and study of these patterns is well worth the trouble. UML notation for

games constitutes a visual language in itself. The expressive power of this language needs

to be vast compared to the number of elements (or ‘words’) in order for the language to

be effective at all. In the end, UML for games is supposed to be an expressive tool for

game designers, not limit their options. It is my intention that UML for games fulfills a

similar role as the diagrams and models of structuralist linguistics such as A.J. Greimas

actantial narrative schema (see Martin & Ringham 2000: 19).

Looking Ahead (and Sideways)

One case study and a handful of examples is not enough to validate a new type of UML

notation. Although my initial explorations are promising, a lot of work remains to be

done. Currently, I am actively testing and refining the UML using a large number of

board games. I have students using the method when designing and analyzing board

games. So far the results have been mixed. Obviously, the UML as presented here is very

well suited to a particular type of game: those that rely on a dynamic internal economy.

Although, according to some, every game has an internal economy, it is obviously more

important to some games than to others.

Looking sideways at computer games, emergence does not always seem to be as

important to the gameplay as it does for board games. Jesper Juul distinguishes between

two categories of games: games of emergence and games of progression. The latter

category, which he associates with computer games, relies more on a carefully designed

series of events than on emergent behavior, not unlike an interactive movie experience

(Juul 2005: 5). However, the scale of modern games and player expectations regarding

their freedom to explore, dictate that for computer games, too, emergence is of growing

importance (cf. Smith 2001, Sweetser 2006). It is my opinion that computer games do not

make enough use of emergence. Hopefully, being able to visualize the structures that

Visualizing Game Dynamics 20

contribute to emergence will inform and inspire future designs of computer games. How

such games should be modeled using a similar scheme is not immediately apparent, it is

one focus of my future research.

 One promising result is the insights a detailed study of a game through UML

yields. It is my, and my students, experience that UML helps identify successful

structures and patterns in existing games and helps identify potential weaknesses or

opportunities when evaluating prototypes. It helps them to adjust a design more

effectively because feedback structure (among other things) becomes very tangible using

UML. What is more, game design UML, and especially, the patterns they describe can be

a valuable creative tool used for brainstorming. In this respect it has much in common

with the Björk and Holopainen’s game design patterns (2004: 44-47).

The UML for game design is a work in progress that I will evolve through my

work as a lecturer and researcher at the Hogeschool van Amsterdam. Using UML to

study games presupposes a particular view on games that frames game design as an

object-oriented design practice. This view ultimately treats all games as ‘games of

emergence’ in which many parts contribute to the behavior of the whole. Although the

work is still in its initial stages, and despite the mixed results that came out of student

work using UML to analyzing and designing board games, I have high hopes UML for

game design. In the end, I hope it will provide game designers with an effective tool that

is intuitive to use, expressive and articulate in its representation, and precise and accurate

enough to facilitate understanding of games as dynamic systems.

References

Adams, E., & Rollings, A. (2007). Fundamentals of Game Design. Upper Saddle River:

Pearson Education, Inc.

Ball, P. (2004) Critical Mass: How One Thing Leads To Another. New York: Farrar,

Straus and Giroux.

Bateman, C., & Boon, R. (2006). 21st Century Game Design. Boston: Charles River

Media.

Bedau, M.A. (1997) Weak Emergence in J. Tomberlin (ed.) Philosophical Perspectives:

Mind Causation, and World, Vol 11, 375-399.

Visualizing Game Dynamics 21

Björk, S. & Holopainen, J. (2004) Patterns in Game Design. Boston: Charles River

Media.

Fromm, J. (2005) Types and Forms of Emergence. Retrieved September 8, 2008, from

http://arxiv.org/abs/nlin.AO/0506028

Fullerton, T. (2008). Game Design Workshop: A Playcentric Approach to Creating

Innovative Games, 2nd Edition. Burlington: Morgan Kaufman.

Huizinga, J. (1997/1938) Homo Ludens: Proeve Ener Bepaling Van Het Spelelement Der

Cultuur. Amsterdam: Pandora.

Juul, J. (2005) Half-Real, Video Games between Real Rules and Fictional Worlds.

Cambridge: The MIT Press.

Koster, R. (2005) A Grammar of Gameplay: game atoms: can games be diagrammed?

Presentation at the Game Developers Congres 2005. Retrieved September 8,

2008, from http://www.theoryoffun.com/grammar/gdc2005.htm

Martin, B. & Ringham, F. (2000) Dictionary of Semiotics. London: Cassell.

Salen, K.& Zimmerman. E. (2003) Rules of Play: Game Design Fundamentals.

Cambridge: The MIT Press.

Selic, B. & Rumbaugh, J. (1998) Using UML for Modeling Complex Real-Time

Systems. Retrieved September 8, 2008, from IBM.com site:

http://www.ibm.com/developerworks/rational/library/content/03July/1000/1155/1

155_umlmodeling.pdf

Smith, H. (2001) The Future of Game Design: Moving Beyond Deus Ex and Other Dated

Paradigms. Retrieved September 8, 2008 from Igda.org site:

http://www.igda.org/articles/hsmith_future.php

Stevens, P. & Pooley, R. (1999) Using UML: Software engineering with objects and

components, updated edition. Harlow: Addison Wesley Longman Ltd.

Sweetser, P. (2006.) An Emergent Approach to Game Design - Development and Play.

PhD thesis, The Univerisity of Queensland

Taylor, M. J., Gresty, D., & Baskett, M. (2006) Computer Game-Flow Design in ACM

Computers in Entertainment, Vol. 4 No. 1, article 3A.

Wolfram S. (2002) A New Kind of Science. Champaign: Wolfram Media Inc.

