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Abstract 

This paper discusses the applicability of human computing games to solving instances of NP-

complete problems, a collection of problems that cannot currently be efficiently solved with 

computers.  The idea is to leverage the diversity offered by a large group of humans—that is, 

utilize the different skills humans have that computers don't as well as the different perspectives 

of the individuals who plays the games.  To explore this possibility, we created Pebble It, a suite 

of games that can be used to solve instances of problems related to a mathematical concept called 

graph pebbling.  Several examples are presented that demonstrate the benefits of this approach to 

problem solving.  We conclude by discussing how these games can link players and researchers 

to form a social-computational system that can strengthen research—sometimes in unexpected 

ways.
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Introduction 

Ever since they were first created, computers have been a boon to mathematicians and 

scientists world-wide.  There are many problems that computers can solve much faster than any 

human.  However, there remain important problems that are beyond their abilities to solve but 

that most humans can solve easily, including recognizing written words, associating words with 

pictures, and determining if two audio clips are the same.  There are many grey areas between 

and around these extremes.  One of these grey areas is the collection of NP-complete problems.  

These are problems that computers are technically able to solve, but not in a reasonable amount 

of time and/or with a reasonable amount of resources.  This is a grey area because it is unknown 

whether or not an algorithm will ever be developed to efficiently solve any of these problems.  

Whether or not humans can efficiently solve any of these problems is also unknown.  Because 

many practical problems related to routing, resource distribution, scheduling, etc. are NP-

complete, progress in this area is important for reasons beyond satisfying the intellectual 

curiosity of a handful of theoretical researchers. 

Games that seek to utilize the ability of humans to solve real problems, called Human 

Computing Games or Games With A Purpose, have been around for several years.  However, 

most of these games solve problems that are already known to be easy for most humans (e.g. 

image recognition).  This paper presents a collection of games whose purpose is to determine if 

and to what extent untrained humans can assist in solving what are typically considered 

computational problems—specifically those that are NP-complete.  Several examples are 

presented that demonstrate how the players, games, and researchers form a social-computational 

system, whereby the insights provided by untrained players assist the researchers. 
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Human Computing Games 

Crowdsourcing is a method of using the collective wisdom a large and diverse group of 

people to solve a problem.  Human Computing Games (HCGs) are a form of crowdsourcing that 

have proven to be an effective method of collecting large amounts of useful data.  HCGs are an 

ideal vehicle for crowdsourcing, especially with abstract or theoretical problems, as they can 

present the problem in a non-threatening way and even transform it into a form of entertainment.  

HCGs cast a wide net, drawing participants with diverse backgrounds, education, talents, etc.  

This increases the chance that someone will see the problem in a different way and think of a 

solution that researchers might easily miss, since players have few preconceived notions of what 

may or may not work.  HCGs may also lead to the discovery of unknown savants. 

Related Work 

In the past five years, over 40 HCGs have been presented at conferences and in journals 

by a growing number of researchers.  These games collect common sense facts, annotate 

everything from music to web pages, train artificial intelligence algorithms, produce useful 

geospatial data, evaluate the sentiment of terms and sentences, help predict protein structures, 

and solve a variety of other problems.  

The first and best-known examples of HCGs are the Games with a Purpose (GWAP) 

created by Luis von Ahn and his colleagues (von Ahn, 2006). The games include the ESP Game 

(von Ahn & Dabbish, 2004) and Phetch (von Ahn, S. Ginosar, M. Kedia, & Blum, 2007; von 

Ahn, Shiry Ginosar, Mihir Kedia, Liu, & Blum, 2006), which label/describe images on the 

Internet; Peekaboom (von Ahn, Liu, & Blum, 2006) and Squigl, which locate objects within 

images; Verbosity, which collects common sense facts; TagATune (Law & von Ahn, 2009; Law, 

von Ahn, Dannenberg, & Crawford, 2007), which annotates music and sound; Matchin (Hacker 
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& von Ahn, 2009), which determines images that users prefer; FlipIt, which determines whether 

or not two images are similar; and PopVideo, which annotates videos.   

Many HCGs follow one of the three game-structure templates described by von Ahn and 

Dabbish:  output-agreement, inversion-problem, and input-agreement (von Ahn & Dabbish, 

2008).  In all three of these templates, players are randomly paired and (presumably) cannot 

communicate with each other.  The goal is for both players to “agree” on something, the idea 

being that if two humans can agree, then it is likely that what they agree about is correct.  With 

output-agreement games, both players are presented with the same input (e.g. a picture) and 

produce outputs (e.g. words that describe the picture) until at least one of their outputs is the 

same (e.g. they both say “cheetah”).  With inversion-problem games, one player is given an input 

(e.g. a word) and provides the other player with outputs related to the input (e.g. phrases that 

describe the word) until the second player can reproduce the input.  Finally, input-agreement 

games provide each player with an input (e.g. a song), both players provide output to each other 

that is related to their given input (e.g. words describing the song—style of music, instruments 

used, etc.), and they need to determine whether or not they were given the same input.  

The Spectral Game (Bradley, Lancashire, Lang, & William, 2009) is aimed at 

undergraduate students studying for organic chemistry. It presents the player with an actual 

spectral sample from the ChemSpider database and the player is to identify the structure of the 

molecule that the spectral sample represents. Not only does this help the chemistry student study 

spectroscopy, but because the user can leave comments on particular samples, it also serves as a 

tool for helping researchers determine if the samples are impure or incorrect. So far the game has 

resulted in three samples being removed from the ChemSpider database, and several impure 

peaks have been removed from the existing samples. 
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In Foldit (Cooper, Treuille, et al., 2010; Cooper, Khatib, et al., 2010) players are 

presented with the task of folding three-dimensional proteins as close as possible to their “natural 

state.”  A better understanding of how proteins fold can help find cures for diseases.  The game 

also allows players to help design proteins that could help with the prevention or treatment of 

diseases.  Protein folding is a computationally difficult problem that may benefit not only from 

visualizations skills, but also from certain problem-solving skills possessed by humans (Z. 

Popović, personal communication, February 14, 2008) that cannot (at least currently) be 

programmed into a computer.  In contrast to the GWAP games that use basic human recognition 

to attack problems, Foldit requires special insight from the player to solve the problem. 

Cognition versus Recognition 

Most HCGs follow a model in which two or more players are randomly grouped and 

cooperate and/or compete in some way, resulting in a piece of information that must be verified 

by other groups of players and/or researchers before it can be considered correct.  In other words, 

they produce data that might be correct.  Furthermore, these games are often solving problems 

that do not necessarily have a fixed answer (e.g. words that describe a picture). 

Most of these games share another characteristic: they require no special insight from 

players.  They solve what we might call recognition problems.  In a sense, most of these games 

view the player like a battery that powers their algorithm, not like an independent computational 

unit that might have something unique to contribute.  They afford players no opportunity to 

become better at the game in a meaningful way, and have no possibility of a savant coming up 

with an insight that the researcher missed.  Only a few researchers are attempting to use games to 

solve cognition problems—those that require more insight and ability to solve.  These include 

the previously mentioned Foldit; FunSAT, a game that has players solve instances of the NP-
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complete problem Satisfiability (DeOrio & Bertacco, 2009); and a game to solve certain NP-

complete scheduling and mapping problems (Lin & Dinda, 2009).  The work of DeOrio and 

Bertacco seems very preliminary, in that although they refer to FunSAT as a ‘massively multi-

player puzzle game’, the only version of the game that we found seemed to be single-player, and 

we found the gameplay to be non-intuitive.  Similarly, the game created by Lin and Dinda does 

not seem to be available online, and the screenshot in their brief abstract does not look very 

game-like.  On the other hand, Foldit has been around for over two years, has had over 57,000 

players, with several hundred active players per week, which is impressive given the complexity 

of the game.  The creators regard the contributions made by the players as so significant that they 

list “Foldit players” as co-authors on their recent articles (Cooper, Treuille, et al., 2010; Cooper, 

Khatib, et al., 2010).  This bodes well for the prospect of using Human Computing Games to 

solve cognition problems. 

Background 

NP-complete Problems 

Problems in the complexity class NP-complete share two important characteristics.  First, 

no efficient algorithm (polynomial-time in the size of the input) is known to solve them.  What 

this means is that only small instances of these problems can currently be solved, even with the 

use of very powerful supercomputers.  Second, all of the problems are equivalent in the sense 

that an efficient algorithm to solve any of them would yield an efficient algorithm to solve all of 

them.  One of the most important open problems in theoretical computer science is whether or 

not there is an efficient algorithm to solve any, and thus all, NP-complete problems (Cook, 

1971).  As many practical problems are NP-complete, there is a large amount of interest in 



SOCIAL-COMPUTATIONAL GAMES        8 

finding an answer to this question. The thousands of papers that have been published related to 

the so-called “P versus NP” question are a testament to this high level of interest. 

Most scholars who research these types of problems are mathematicians and theoretical 

computer scientists—not the most diverse group of thinkers.  In addition, some people think that 

globalization has led to more uniformity of thought (Gasarch, 2002).  This is particularly 

problematic in this case: since most researchers believe that no efficient algorithm will be found 

for NP-complete problems, few researchers are willing or able to “go out on a limb” and spend 

too much time attempting to find such an algorithm.  Finally, the tenure and promotion system 

makes it difficult for researchers to spend long periods of time trying to solve the problem with 

little to no evidence of progress. 

The use of HCGs has the potential to contribute to this research area by bringing in the 

expertise of the more broadly educated masses.  Since most people do not understand this 

problem, its difficulty, and its already assumed—but unproven—answer, they will be neither 

discouraged nor influenced by those “in the know.”  They will be able to approach the problem 

from a perspective which is likely very different from that of a typical researcher, having no 

preconceived notions and typically not being subject to peer pressure and expectation.  Finally, 

they will bring with them knowledge that perhaps no current researchers possess. 

Graph Pebbling 

Many important NP-complete problems are related to graphs or can easily be reduced to 

problems on graphs.  Further, many graph problems can be visualized in a very game-like way.  

In light of this, games based on graph problems are good candidates to test the feasibility of 

applying the HCG model to computational problems.  In fact, a collection of problems related to 

a mathematical construct called graph pebbling are ideal in that these problems are often 
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described using the language of games.  These thoughts gave rise to Pebble It, a suite of games 

that solve various graph pebbling problems.  Before we describe the games, a brief discussion of 

graph pebbling is necessary. 

A graph G = (V, E) is composed of a set of vertices, V, and a set of pairs of vertices, E, 

called edges.  Put simply, a graph is a set of vertices with edges connecting some of the vertices 

(see Figure 1a).  Two vertices of a graph are adjacent to each other if they are connected by an 

edge.  A pebbling configuration (or just configuration if the context is clear) is a function C from 

vertices to non-negative integers, where C(v) is the number of pebbles on vertex vV.  In other 

words, a pebbling configuration assigns zero or more pebbles to each vertex (see Figure 1b).   

For any vertex v such that C(v)  2 (that is, v contains at least two pebbles), a pebbling 

step consists of removing two pebbles from v and placing one pebble on a vertex adjacent to v.  

Thus, pebbles can be moved from one vertex to an adjacent vertex, but each time a pebble is 

moved, an additional pebble is lost (see Figure 1c).  A configuration is called r-solvable if there 

is a sequence of pebbling steps that places at least one pebble on a specified vertex r.  A 

configuration is called solvable if it is r-solvable for every rV—that is, if it is possible to place 

a pebble on any vertex of the graph using pebbling steps.   

a)         b)          c)  

Figure 1  (a) A graph with vertex set {1, 2, 3, 4, 5, 6} and edge set {(1,2), (1,3), (1,4), (2,3), (3,4), (3,5), 

(3,6), (4,5), (4,6), (5,6)}.    (b) A graph with pebbles on some of the vertices.  (c) The graph from (b) after 

a pebble is moved as indicated by the arrow. 
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Determining whether or not a configuration is r-solvable for a given vertex r is NP-

complete, which implies that determining solvability for the entire configuration is also NP-

complete (Milans & Clark, 2006; Watson, 2005).  These problems are referred to as Reachable 

and Solvable, respectively.  An efficient algorithm to solve both of these problems is known for 

certain classes of graphs (Cusack & Bekmetjev, 2009).  Other problems related to graph pebbling 

which are NP-complete include determining the minimum number of pebbles needed to ensure 

that any configuration is solvable (Pebbling Number), the minimum number of pebbles such that 

there exists at least one solvable configuration (Optimal Pebbling), and whether or not there is a 

sequence of pebbling steps that leads to a graph in which every vertex has at least one pebble 

(Cover Pebbling) (Milans & Clark, 2006). 

The Games 

As mentioned previously, Pebble It is a suite of games related to graph pebbling.  They 

can currently be played at http://graph.computinggames.org.  Each game is either tied directly to 

a particular problem or can be used to help answer questions about several problems.  In most 

Pebble It games players either make moves corresponding to pebbling steps or place pebbles on 

a graph with a particular goal in mind.  Every game consists of a collection of typically unrelated 

puzzles of that type.  Every move made by the player is recorded and stored in a database so that 

the games can be replayed and studied by the player and/or members of the research team.  

Players are ranked on each puzzle and earn points based on how well they did relative to both 

their previous best score on the puzzle and the previous best score of all players, including the 

amount of time it took them to complete the puzzle.  The points allow them to “level up” as well 

as be ranked according to their overall contribution to the project.  Players can also earn 

achievements for things like attempting all puzzles in a particular game, completing a puzzle a 

http://graph.computinggames.org.
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certain number or times, or getting first place on any puzzle.  Puzzles are split into 6 skill levels, 

and players can only play puzzles in the next skill level when they have completed a certain 

percentage of puzzles in their current skill level for that game.  These features are all designed to 

not only keep players coming back to play often, but to also encourage them to play better so that 

their contributions will be more meaningful. 

Reach It 

 Reach It is the simplest and most straightforward game in the Pebble It framework.  The 

puzzle consists of a graph and a pebbling configuration, and players are asked to make pebbling 

steps in order to move a pebble onto a target vertex.  In other words, it helps solve the Reachable 

problem.  Users have the option of restarting the puzzle at any time without penalty, as it is 

possible that they may run out of pebbles or wish to try a different strategy.  Since we want to 

know the most efficient way to reach the goal vertex, scores are based on the number of pebbling 

steps, with fewer moves being better. 

  New Pebble It players are encouraged to play Reach It first, as it is the easiest to grasp 

conceptually and serves as a good introduction to the idea of graph pebbling.  Another benefit of 

Reach It is that a configuration will often have many vertices that are easily reached, with only a 

small number of vertices that are difficult to reach. By marking one of these difficult vertices as 

the target, it is possible to narrow graph solvability problems down to just one goal for players to 

focus their attention on. 

Rock It 

 Rock It extends the premise of Reach It from determining if a single vertex is reachable to 

checking if every vertex on a graph is reachable—solving the Solvable problem. Players are 

asked to show that each vertex on a graph is reachable by moving at least one pebble onto it. 
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Once a pebble has been placed on a vertex, that vertex is designated as "reachable" (symbolized 

by the base of the vertex turning from red to green.  See Figure 2), and remains reachable 

regardless of how many pebbles it has later. This means that users do not have to place a pebble 

on every vertex on a graph at once, and are free to “recycle” their pebbles at any time, restoring  

 

 

Figure 2. A screenshot of the play screen for Rock It.  The player must make pebbling steps to place 

pebbles on each of the red vertices.  Since in many cases it is impossible to reach them all 

simultaneously, they may use the “recycle” button to put the pebbles back to their initial configurations 

and continue making pebbling steps. 
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the initial pebbling configuration. They can also undo their moves, which reverses the effects of 

their last move but leaves reachable vertices colored green. As with Reach It, players are trying 

to finish the puzzle in the fewest number of pebbling moves. 

Confound It 

Rather than being concerned with determining the solvability of a pebbling configuration, 

Confound It asks players to place as many pebbles on a graph as possible in such a way that the 

configuration is unsolvable. In other words, they are trying to make sure at least one vertex 

cannot be reached by a pebble.  Players can place as many pebbles on the graph as desired and, 

as long as they have at least one vertex with two or more pebbles on it, can click the “Check It” 

button to test their configuration.  They have a choice of several algorithms to test the solvability 

of the puzzle, and if one of them determines that the configuration is unsolvable, they have 

completed the puzzle.  Since it is more difficult to make a graph unsolvable with a large number 

of pebbles than it is with a small number, score is based on the number of pebbles they place on 

the graph, with higher scores being better. 

Results from Confound It can help determine bounds on the pebbling number of a graph.  

Since the pebbling number is the minimum number of pebbles required to ensure that any 

arrangement of those pebbles on a graph will be solvable, the pebbling number must be higher 

than the number of pebbles used on any unsolvable configuration. In other words, if a pebbling 

configuration is found to be unsolvable, then the pebbling number has to be higher than the 

number of pebbles used in that configuration. Thus, by encouraging users to find unsolvable 

configurations with the greatest numbers of pebbles, we can lower bound the pebbling number 

for a graph based on the best solution to the puzzle. 
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Optimize It 

Similar to Confound It, Optimize It presents players with a graph and asks them to place 

pebbles on vertices. However, the goal is just the opposite—players are told to come up with a 

solvable pebbling configuration using as few pebbles as possible.  Optimize It helps determine 

bounds on the optimal pebbling number of a graph.  

Goals 

There are several possible goals this sort of research could have.  The most ambitious 

goal would be to use HCGs to help settle the P versus NP questions.  For several reasons beyond 

the scope of this paper, this is an extremely unlikely outcome.  A slightly less ambitious goal is 

to use player strategies to improve the currently best known algorithms for the problems that the 

games are based on.  This is more difficult than it sounds, however.  As an example, although we 

know that humans can generally differentiate between a cat and a dog in a picture, we really have 

no idea how they do it, so their “strategy” cannot be turned into an algorithm.  Given that the 

focus of this project is on more computational problems, and that all of the moves the players 

make as they play the games are recorded, there may be a better chance of extracting strategies.  

The difficulty is that although their moves can be studied, doing so does not shed any light on 

why such moves are made—and users may not be able to articulate their reasoning.  So in the 

end, it might be possible to learn from player strategies, but this is not necessarily an expectation. 

There are two more reasonable goals, especially in the short-term.  The first is that 

players will solve particular instances of problems that computers have failed to solve 

previously.  Since humans solve problems very differently than computers, the hope is that 

players can use short-cuts that are difficult—if not impossible—to program algorithmically, 

allowing them to outperform computers on certain types of problem instances.  In other words, 
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humans are sometimes able to “just look at” a problem and see the answer—or at least greatly 

narrow down the possibilities.  In fact, there are Reach It and Rock It puzzles that humans can 

determine in just a few minutes whether or not they can be solved, but which our current 

algorithms cannot determine given hours or even days. 

The second goal is that players will provide data that can be used to assist in establishing 

certain facts about the underlying problems.  For instance, it is often the case that patterns 

emerge for things like the pebbling number or optimal pebbling number when considering a 

family of graphs (a collection of graphs with very similar structure but varying in size). 

However, these patterns may not be very obvious.  A series of puzzles can be created so that 

players can determine such patterns—or at least provide rough estimates.  Thus, a tedious task 

for the researcher can be turned into a game for others.  Additionally, puzzles can be created to 

assist researchers in constructing examples and counter-examples.  Sometimes researchers need 

to construct structures (in our case, graphs) with (or without) certain properties in order to 

support or refute a conjecture.  This is a situation in which appealing to a larger group of 

people—in this case players—is certainly helpful since everyone has their own way of looking at 

things, and what might slip past some (e.g. the researchers) will hopefully not slip past everyone 

(e.g. the players). 

Of course a fundamental question that must be addressed first is whether or not untrained 

humans can even solve instances of computational problems while playing a game.  Can a grade-

school kid, soccer-mom, construction worker, or retired insurance salesman be expected to 

actually solve puzzles based on mathematical problems without having to understand all of the 

complexities involved?  Can the uninformed (or ill-informed) really contribute something 
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meaningful to the research of experts in a given field?  In the next section, evidence is provided 

that suggests the answer to these questions is yes. 

Results 

We expect to fully deploy Pebble It to the public late in the summer of 2010.  At this 

point Pebble It has been tested by over two hundred people.  Most players have completed 

several Rock It puzzles (this was the first game to be developed), about 45 players have played 

Reach It puzzles, about 10 have played Confound It, and about 7 have played Optimize It (The 

latter two puzzles have only been available to the public for about a week.).  Even with only this 

much data, the results so far have been both encouraging and surprising.  Most of the players had 

no previous knowledge of graph pebbling yet they picked up the rules fairly quickly, especially 

after modifications were made based on the first round of player testing.  Two particular 

examples are especially noteworthy.   

The first example occurred when a player beat the high score on a relatively simple 

puzzle (See Figure 3).  Since the puzzle was so easy, and since we clearly knew the best way to 

solve it, we assumed there must be an error in how the player’s moves were recorded or in the 

formula used to compute his score.  We replayed his solution and were stunned that we had 

totally overlooked a strategy.  As seen in Figure 3b, it seems logical that in order to reach a 

vertex we should simply move all of the pebbles along the same path.  However, the optimal 

strategy is to split them and then recombine them later, as shown in Figure 3c.  With this 

technique, one additional vertex is covered with the same number of moves, saving a move later 

on.  A non-expert in graph pebbling was able to make a simple observation that eluded a 

researcher who had focused on this problem for several years, along with three students involved 

in creating the game.  This incident was the first evidence that the crowdsourcing approach has 
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a)  

b)  

c)  

Figure 3.  (a) Rock It puzzle Melek in its original configuration.  (b) The path we believed was most 

efficient to move a pebble to the upper-right vertex.  The number next to each arrow indicates the number 

of pebbles moved.  After recycling, five more moves are required to reach the remainder of the vertices.  

(c) The path used by a player.  Although it takes the same number of moves to reach the upper-right 

vertex, only four moves are needed to finish the puzzle after recycling—one less than required by our 

“optimal” solution. 
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potential for problems that might generally be thought of as too computational for the average 

player.  Although a simple example, we believe that this is strong evidence that the average 

person may have much more to offer than some researchers might suspect.  Moreover, the fact 

that this is such a simple example actually lends credence to the crowdsourcing approach since if 

such a simple optimization can be missed by several researchers, it is likely that more 

complicated optimizations might also be missed by researchers but discovered by players.  We 

firmly believe that the “more the merrier” approach has a lot of potential to contribute to this sort 

of research. 

A second encouraging example is related to Confound It.  Before the example is 

discussed, a little background is necessary.  As mentioned previously, the goal of Confound It is 

to place as many pebbles on a graph as possible so that there is at least one vertex that cannot be 

reached with a pebble.   Some method is needed to tell players whether or not their configuration 

is solvable.  As there is no efficient algorithm to determine solvability of every graph, this type 

of puzzle presents a challenge.  Several algorithms are provided for the players to test their 

solutions.  If one is taking too long, they are free to stop it and try another one.  The idea is that 

players are only presented with puzzles for which one of our algorithms can determine the 

solvability within a few minutes, if possible.  In order to do this, we must be able to estimate how 

long the algorithms will take, which can be tricky.  The approach we have taken thus far is to 

implement an algorithm that we think will perform reasonably on some set of graphs and 

configurations and to test its performance.  When we find one or more graphs/configurations on 

which it does not perform well, we try to either improve the algorithm for those graphs, or create 

a new algorithm.  When all of our sample puzzles are solvable with at least one of the current 

algorithms, we create new puzzles that we suspect none of the current algorithms will perform 



SOCIAL-COMPUTATIONAL GAMES        19 

well on.  These puzzles help identify the weaknesses of the current algorithms and provide 

inspiration for the next algorithm.  The following example will help to illustrate this process. 

A puzzle called FourSixesAndSome (See Figure 4a) was created as an example of a 

puzzle that the exhaustive search algorithm would have difficulty completing.  This algorithm 

failed to solve the puzzle and was aborted after 470 hours.  An algorithm based on shortest path 

was developed to handle this and several other examples—it took only 125 milliseconds for this 

graph.  Then we created 4ToTrickU (See Figure 4b) by slightly modifying FourSixesAndSome so 

that the shortest path algorithm would no longer work.   

Another algorithm was developed that performed well on 4ToTrickU and all of the other 

graphs, which led to the creation of a specialized graph that thwarted it.  Even so, we still 

believed that this latest algorithm would perform efficiently on all diameter two graphs (graphs 

in which every pair of vertices is either directly connected or has a common neighbor) and were 

in the process of constructing a proof of this fact.  We added two Confound It puzzles, one of 

them diameter two, that we were reasonably sure this algorithm could handle with ease.  Then 

two players, a high school student and a college student, came up with very simple examples that 

stumped the algorithm.  Upon seeing the examples, it was immediately clear why the algorithm 

performed badly.  Although we would have eventually found this weakness, the timing of these 

examples saved us countless hours trying to prove something that now seems likely to be false.  

With our knowledge and effort we failed to come up with similar examples, yet two players, who 

had no knowledge of our algorithms and were not even trying to come up with hard examples, 

provided us with invaluable test cases.  This experience has inspired a future Pebble It game 

called Stump It in which the goal will be to create a graph and pebbling configuration of 

reasonable size that none of our algorithms can solve in less than some predetermined time. 
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a)  

b)  

Figure 4. (a) FourSixesAndSome.  Reaching the right-most vertex can be accomplished by always 

moving pebbles closer to it—the shortest path strategy.  (b) 4ToTrickU.  Reaching the right-most vertex 

requires moving 1 pebble along the path indicated by the arrows, and then using the shortest path 

strategy.  Using the shorted path strategy alone does not work on this puzzle. 
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These examples demonstrate that players can contribute to research in important and 

unintended ways, sometimes without even realizing it.  They are concrete examples of how 

people with no specialized knowledge in a particular field can still contribute to research in that 

field, even if it involves algorithmic processes and complex mathematical concepts. 

Challenges 

Beyond the obvious challenges of creating games based on difficult problems that are fun 

to play and getting people to play them when there are thousands of other games to choose from, 

there are other challenges to address pertaining to using games to assist in solving NP-complete 

problems.  Since graph pebbling problems map very easily to games, they are a good starting 

point to explore the feasibility of the techniques outlined here.  However, beyond assisting a 

handful of mathematicians with theoretical results related to graph pebbling, there are currently 

no known practical applications of graph pebbling.  Thus one challenge is to choose which 

problems to focus on.  Four criteria come to mind:  First, it must be possible to map the problem 

to an enjoyable game.  Although some NP-complete problems, especially those related to graphs, 

may map nicely into games, this may not be the case with many (perhaps even most) NP-

complete problems.  Second, the games should allow for the collection of meaningful data.  In 

other words, the players' actions should map to problem details in such a way that the players can 

make intelligent game choices that correspond to intelligent problem-solving choices.  This is 

one thing that sets HCGs apart from volunteer computing games (Cusack, Martens, & Mutreja, 

2006; Cusack, Peck, & Riolo, 2008), a paradigm in which the power of the player’s computer is 

of more interest than the power of their mind.  Third, the problems, along with the specific 

puzzles created for each, should be practical in the sense that they correspond to real-world 

problems and data.  Since even progress on theoretical problems is of interest to some, this 
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criteria is not strictly necessary.  However, there are benefits on all sides when real-world 

problems are involved.  Finally, the problems should be those which do not already have 

reasonably efficient solutions.  As with the previous criteria, this is not strictly necessary, but if a 

problem can already be solved with another technique, then it is not clear why an HCG would be 

needed. 

Another challenge relates to the non-symmetric nature of NP-complete problems.  As an 

example, to demonstrate that a pebbling configuration is solvable, a player only needs to make 

all of the legal moves required to place a pebble on each vertex.  On the other hand, there is in 

general no easy way for the player to demonstrate that a configuration is not solvable.  All NP-

complete decision problems (that is, problems that ask a yes-no question) share this difficulty—

essentially, when the answer is ‘yes’ there is generally an easy way to prove it, but when the 

answer is ‘no’ there is not.1  In other words, if the answer to a particular problem is ‘yes’, then 

we might expect that eventually someone will be able to figure out the correct steps to 

demonstrate that this is the case.  However, currently we have no way to allow the players to 

demonstrate that the answer is ‘no’, and it is not clear how, or even if, this can be done.  If a 

puzzle goes unsolved for years, we may suspect that the answer is ‘no’, but cannot say this with 

any certainty. 

Conclusion 

Pebble It is a game that takes the human desire to be entertained and turns it into a useful 

tool for researchers.  More than that, it forms the center of a social-computational system in 

which researchers create puzzles so that players can contribute using their unique perspectives.  

                                                
1 Technically speaking all NP-complete problems are decision problems, but in order to not bog down the 

discussion with details beyond the scope of this paper, the discussion of NP-complete problems has been simplified.  
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The players provide data that is larger in both quantity and diversity than a researcher could 

possibly create alone.  Although the results are still preliminary, there is evidence that given the 

right games and the right puzzles, players will be able to provide useful data related to graph 

pebbling.  This data will not only be in the form of solutions to particular puzzles, which is an 

expected outcome, but will also provide examples and counter examples that can be used to 

improve algorithms and future puzzles in unanticipated ways. 

This concept is not limited to graph pebbling.  Although it is not be possible to turn every 

problem into a game, there are many problems—especially graph-relates ones—that have 

potential.  We believe that the wisdom of the crowds has something to offer researchers in fields 

like mathematics, theoretical computer science, and engineering, where conventional wisdom 

would suggest that only “experts” can make significant contributions, and that online games are 

a perfect venue in which to pursue this partnership.  This approach to research certainly has its 

own set of challenges, but we believe that facing them is worth the risk in light of the potential 

benefits, both foreseen and unforeseen. 
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