Incorporating Coherent Terrain Types
into Story-Driven Procedural Maps

Elizabeth A. Matthews and Brian A. Malloy

School of Computing
Clemson University
Clemson, South Carolina 29634
{ematth2,malloy } @clemson.edu

Abstract

We present a system for procedurally generating a map for a story-driven game,
where locations in the map are assigned algorithmically or by designer preference.
In addition, we also generate terrain, together with climate to match the terrain,
with smooth, coherent transitions between terrain exhibiting different weather. We
summarize weather approximations using a tuple to represent conditions such as
temperature and humidity. We then exploit our previous work in map construction
by placing locations of interest in the story on the map and then build a terrain
boundary map that determines the boundaries between ranges of tuple values that
belong to specific terrain types. We complete our construction by combining the
climate map with a terrain type lookup, producing a final map with cohesive ter-
rains. We describe the implementation of our system and illustrate the construction
with some procedurally generated maps, including the procedural generation of the
Narshe/Figaro area from Final Fantasy VI.

Introduction

Some game companies have forsaken the story-driven genre in favor of multiplayer, first per-
son shooter games such as Call of Duty and Battlefield, because of their potential for high revenue.
In fact, Call of Duty: Modern Warfare 3 was able to pass the one billion mark in revenue only 16
days after its release (Bedigian, 2012). However, the recent success of The Elder Scrolls V: Skyrim,
whose revenues have exceeded all previous Elder Scroll games including Morrowind and Oblivion,
has motivated some game companies, such as Remedy for example, to produce story-driven games
(Sterling, 2012; Yin-Poole, 2012).

Gee has shown that learning occurs in playing all types of video games, where the player
must learn the rules of the game, the names of characters, the game map and the geography of the
world (Gee, 2005). However, the puzzle-driven nature of story-driven games offers two key aspects
that enhance the learning experience: domain knowledge and insight (Vara & Osterweil, 2010). The
domain knowledge required in story-driven games involves the information that the player needs to

COHERENT TERRAIN IN PROCEDURAL MAPS 2

be able to solve a puzzle in the game, whereas insight is required to be able to apply the domain
knowledge to solve the particular puzzle posed in the game.

However, the problem with the story-driven genre is its lack of replayability, so that once the
player has learned to traverse the game world, acquire domain knowledge, and solve the puzzles
in the game, there is little incentive to replay the game. Nevertheless, the story-driven genre offers
the potential for large revenue, as illustrated by the success of Skyrim, as well as the potential for
enhanced learning far beyond what may be acquired by playing a first person shooter style video
game, where there are fewer puzzles to solve and game play is motivated by the adrenaline rush of
shooting and explosions.

One approach to enhancing the replayability of the story-driven genre is to exploit procedural
generation, which is the development of game media using algorithms. Procedural generation has
been used successfully in story-driven games including the Diablo series, where the dungeons in
the game were procedurally generated, so that a player was unlikely to encounter the same dungeon
layout more than once. Some research has taken this concept further. For example, Dormans
uses a context free grammar to arrange various terrain artifacts to support the story (Dormans,
2010). Similarly, Hartsook et al. have developed game forge, a system for procedurally generating
a playable story-driven game (Hartsook, Zook, Das, & Riedl, 2011).

(a) Snowy Biome adjacent to a Jungle Biome (b) Snowy Biome adjacent to a Desert Biome

Figure 1. : Two terrain samples from the virally popular game Minecraft. Both samples exhibit
starkly contrasting terrain placed adjacent to each other. Using the technique described in this
paper, a game developer can establish terrain with smooth, coherent transitions between contrasting
terrain types.

However, no previous research has been developed that permits the procedural generation of
terrain with matching climate, where transitions from different terrain types, and different climate
patterns, are guaranteed to occur in a smooth, coherent fashion. Even in the virally successful game
Minecraft, a player might encounter a snowy Biome directly adjacent to a dessert Biome, with
no coherent transition in between the two Biomes. For example, Figure 1 illustrates two terrain
samples from Minecraft: the terrain in Figure la illustrates a snowy Biome directly adjacent to a
jungle Biome, and Figure 1b illustrates a snowy Biome directly adjacent to a desert Biome.

In this paper, we present a system for procedurally generating a story-driven game world. We
summarize weather approximations using a tuple to represent conditions such as temperature and
humidity. We then exploit our previous work in map construction by placing locations of interest
in the story on the map and then build a terrain boundary map that determines the boundaries
between ranges of tuple values that belong to specific terrain types (Matthews & Malloy, 2011).
Finally, we complete our construction by combining the climate map with a terrain type lookup,

COHERENT TERRAIN IN PROCEDURAL MAPS 3

producing a final map with cohesive terrains and climate patterns. The technique that we present
provides flexibility to the game designer to produce coherent terrain transitions, thereby precluding
the possibility of radically different terrain types being placed directly adjacent to each other.

In the next section we define terms and provide background information. In the Related
Work Section we describe the research that relates to our work, and we then describe the problem
that we address in this paper. We describe our methodology in the section titled Coherent Terrain
Map Construction, which contains the technique that we use to build a coherent terrain map. We
describe our implementation of the technique and provide some results of some game maps that we
have produced, including the procedural generation of the Narshe/Figaro area from Final Fantasy
VL. Finally, in the last section we draw conclusions.

Background

In this section, we define the terms and concepts that we use in our research on map gener-
ation. We begin with a description of procedural generation, followed by a review of a procedural
generation technique referred to as Perlin Noise. Finally, we describe the use of maps in games and
how they are, typically, interwoven with a level in the game.

Procedural Generation

Procedural generation is the process of using an algorithm to generate audio or video content
for games, movies or other digital media. Using a random number, generated from a seed or start
number, and a set of descriptive parameters, procedural generation techniques can create unique
media tailored to a set of pre-defined criteria. The basic structure and variance of a particular
generated content is determined by the procedure used to create the content. An important axiom
that applies to virtually all procedural generation techniques is that a given seed will always produce
the same content and that a variation of the seed will produce variations in content, and sometimes
different seeds can produce a wide range of variations in content. Procedural generation has massive
applicability to video games because it can be used to produce unique and non-repeated textures for
objects in the game, such as buildings or trees; or, it can be used to build a set of unique maps or
dungeon layouts.

Perlin Noise

Perlin Noise is a procedural generation technique, developed by Ken Perlin, to generate a
texture, sometimes referred to as a procedural texture (Perlin, 2002). Procedural textures generated
using Perlin noise are used by visual effects artists to increase the realism in a computer generated
scene, due to the pseudo-random appearance of the texture. Perlin noise is frequently used to create
effects such as fire, smoke, or clouds. In spite of the random appearance of procedural textures, they
retain the reproducible quality of all procedurally generated media.

Levels and Maps

In video game terminology, the concept of a map is frequently interwoven with the notion
of a level. A level can assume several different meanings, depending on the particular game being
played. For example, a /level may refer to the degree of skill or ability that a player currently
possesses in the game; in this sense, the term level-up refers to an increase of skill to the next “
level.” A second meaning to the term /level refers to the total space available to a player in their

COHERENT TERRAIN IN PROCEDURAL MAPS 4

attempt to complete a specific objective in the game (Wikipedia, 2012). A historical example of
a level can be found in early role-playing games where it referred to a level in a dungeon; players
typically begin at the bottom level and proceed through increasingly numbered levels, usually also
increasing in difficulty, until they reached freedom at the top level (Wikipedia, 2012). Alternatively,
they might begin at the top level and proceed to lower levels until they arrived at a “treasure” at the
bottom level.

A map in a dungeon-based game would typically show the current level of the dungeon, or,
the current dungeon in the case of multiple dungeons. An interesting and important example of
procedurally generating a map for a dungeon can be found in the popular game series Diablo.

A map is a visual description of a level, with important aspects of the map, such as the cur-
rent player position, objective(s), treasures, rivers, streams, mountains, and other artifacts, clearly
marked. There can be more than one map associated with a particular game; for example, a game
might have a world map, a level map, and even a map of a cave that the player is currently exploring.
In our research, we typically are referring to the world map, or a map that encompasses the entire
world that a player would explore.

Minecraft is a popular game with high procedurally generated content. In Minecraft, a Chunk
of the world is procedurally generated as the player explores the world. As the player continues to
explore, the world is generated on demand as the player moves through, and continues to explore,
the world. When talking about maps in Minecraft, one must be careful because there is a in-game
item called a Map, which is useable in game by players as a visual representation of a small nearby
area of the world as a whole. When we use the term map, we mean the entire world, rather than an
item in the game. Because Minecraft’s world is technically infinite, the term map as defined for our
project does not transfer well.

In Minecraft, the physical world is generated in chunks, sections of land that can be generated
on the fly when the player first reaches it, but are stored in a save file after an initial visit so that
any modifications the player does to the terrain are permanent. Different types of terrain found
in Minecraft are called Biomes, which are sections of land with similar characterisitcs, such as a
rainforest or tundra. The physical height levels match up between Biomes and chunks due to the
inherent procedural algorithm used by Minecraft.

Minecraft distinguishes Biomes with temperature and rainfall, as compared to our notion
about temperature and humidity. Our climates are based on temperature and humidity, which we feel
is more closely aligned with actual weather patterns, but not necessarily more complicated to store.
Minecraft Biomes are haphazard in placement and are not required to blend in with surrounding
Biomes, as seen in Figure 1. By contrast, the Biomes, or terrain, that we wish to build for story
driven games are required to be coherent with neighboring climate patterns, since an abrupt change
in terrain would throw off the immersion of the player.

Related Work

Procedural generation is used extensively in video games, both in the studio for pre-
production media generation and, less frequently, for dynamically generated media during gameplay
(Andrew Doull, 2011). Canabalt is a recent popular, 2D, online, platform game where all actions
are automated except for the players ability to jump using a single key press. The extended replay
value of Canabalt is due, in part, to the fact that the player must jump from one roof to the next
and the height, length and distance between each roof is determined algorithmically. Procedurally
generated media that can be developed dynamically can not only extend the replay value of the

COHERENT TERRAIN IN PROCEDURAL MAPS 5

game, but permit wide variations in constraints that can be placed on the generation of a game
world, including facility for guaranteeing coherence in the placement of game objects, including
user-specified constraints (Matthews & Malloy, 2011).

In addition to Canabalt, an application of procedural generation that is more relevant to our
approach is the generation of dungeon layouts in the Diablo series, a fantasy-themed, action role-
playing game (Blizzard Entertainment, 1996). Most of the dungeons and many terrains in Diablo I
and II are procedurally generated. However, map pieces in the generated dungeons are occasionally
placed so that the generated level might not always maintain fidelity with the game objective or
story line. For example, a goal of a particular level might be to travel from an entrance to a staircase,
but the entrance and the staircase might be placed adjacent to each other, rendering the objective
trivially achievable. We have described an approach that permits the user to place constraints on the
location of objects in the world, obviating the lack of story coherence found in the Diablo approach
(Matthews & Malloy, 2011). In this paper, we extend this previously developed technique to include
coherent procedural generation of climate.

Yannakakis has done extensive work in procedural generation, particularly focusing on a
player’s emotional experience, or how much “fun” was had (Yannakakis & Togelius, 2011). Re-
playability is the focus for our work, which is implied to increase the positive experience upon
a player’s successive play throughs of a particular game. Yannakakis focuses on reactive game
content (Shaker, Yannakakis, & Togelius, 2012), with various models of a player’s emotional lev-
els influencing a game’s level set up. Most relevent is his work on level generation (Shaker et al.,
2011), where the physical layout of a platformer’s level design is the desired result of the procedural
generation. However, these techniques focus on action-like platformers, similar to Canabalt, where
a level’s layout needs to be coherent in the sense that it must be playable, but not necessarily fit a
complex storyline, which is required for a RPG map generation. Additionally, a platformer has no
concept of world-based ideas, such as climate or terrain.

Dormans describes an approach for procedurally generating levels in adventure games
(Dormans, 2010). He summarizes a level as consisting of missions and spaces, where missions
are the tasks that the player must perform to complete the level, and space is the geometric layout of
the level. Dormans represents a mission as a directed graph indicating which tasks are made avail-
able by completing the previous task, and spaces are represented as a graph whose nodes are rooms
and the edges are connections between the rooms. A level is generated in two steps, where missions
and spaces are generated separately using different context free grammars and different generative
algorithms for each. However, the approach does not permit a game designer the flexibility of easily
specifying constraints on level generation and there is no facility for handling climate and coherent
terrain generation.

Another approach to the procedural generation of levels using grammars is described by
Smith et al. (Smith et al., 2011). The focus of their work is 2D platform games and they describe
Launchpad, a two-tiered, grammar-based approach where the first tier is a rhythm generator, and
the second tier creates the geometry of the level based on the rhythm generated in the first tier. The
result is a collection of rhythm groups that can be combined to form a “level.” Their approach creates
complicated play fields with obstacles and collectible items consistent with the rhythm intended for
the game, independent of the generated geometry. However, their approach does not provide for
terrain or weather in the resulting geometry and they make no attempt to maintain coherency across
rhythm groups that form the generated level.

Hartsook et al. describe techniques for automatically generating a fully playable computer

COHERENT TERRAIN IN PROCEDURAL MAPS 6

role-playing game based on a story (Hartsook et al., 2011). The story can be written either by a
human, or created by a computational story generator using information about the play style and
preferences of the player. They describe a system, game forge, which can generate the story for a
role-playing game, and map the story to a space using two metaphors: islands and bridges. Islands
are areas where critical plot points occur, and bridges are areas between islands where non-plot
specific game play can occur.

In their approach, a game world model is provided by the designer and game forge generates
the game world through the use of a genetic algorithm (Hartsook et al., 2011). A fitness function
is used to constrain the world model to more “natural” worlds. An environment transition graph is
used to determine adjacency of environment types. For example, there may be a high probability
of a cave being placed adjacent to a mountain, but there may be a low probability of a forest being
placed next to a mountain. In our previous work, we describe techniques that provide a user interface
and a spring-based physics engine to facilitate world generation by the designer, which provides
more flexibility in map generation and makes it easier for the designer to adjust locations in the
procedurally generated map (Matthews & Malloy, 2011). Also, the approach described by Hartsook,
et al., does not include a facility for generating climate in a coherent fashion, as we do in this current
article.

The Problem that we Address

The original goal of our work was to develop a technique for generating maps for story-driven
video games that might enable a game developer to build a map with cities and towns strategically
placed so that they align with constraints specified by the developer, and consistent with the story
driving the game (Matthews & Malloy, 2011). We were successful in developing such a technique
and we summarized our approach in reference (Matthews & Malloy, 2011). Our previous approach
included constraints that permitted the game designer to address issues about cities, towns and
other objects in the environment, such as number, distance, direction, navigation and placement;
the technique also coherently filled the area around the city or town with appropriate terrain to
encourage or discourage navigation, whichever might be appropriate within the context of the story.

However, our previous approach did not include a facility for procedural generation of climate
considerations, or to guarantee that these procedurally generated climate patterns were consistent
with the story and the terrain within which they might occur. We address this shortcoming in this pa-
per and, in this section, we provide an overview of our approach to procedurally generate a coherent
map for story-driven video games. In the next sub-section we describe our map generation sys-
tem, and in Overview of Coherent Terrain Map Generation, we describe a problem in our previous
approach that will be addressed in the final sub-section.

Problems in Our Previous Map Generation System

The approach to procedural map generation that we describe in reference (Matthews & Mal-
loy, 2011), began with the assumption that the terrain must be fully integrated into the story that
drives the game. Moreover, the progression of the story is likely to be intimately tied to progression
through the map within which the story occurs. Thus, we developed an abstraction of the story that
consists of the Locations of Interest, LOI, in the story and the restrictions between these LOI. A
Location of Interest is a particular place where something important happens in the game’s story. A
typical LOI might be the town where the player begins, a cave where the player must confront an

COHERENT TERRAIN IN PROCEDURAL MAPS 7

1. Read or generate a list of LOI
and their corresponding two-tuples;

2. Make an empty grid for the world;
3. Populate the grid with LOI
4. Interpolate

Figure 2. : Algorithm outline to build a Climate Map

enemy, or a hidden forest where the player might find an optional hidden castle. Using restrictions
between these LOI, we described a system that permitted the developer to specify or approximate
where the LOI may be placed, how far apart they might be, and whether or not there is a traversible
path between successive LOL

We exploited a physics engine to translate these parameters into a physical shape: the LOI
are physical bodies in the engine, and the restrictions between the LOI are represented as spring-like
connections between the physical representation of the LOI. This physical representation permitted
us to build a space within which we might generate the coordinates of the LOI so that they do not
violate the restrictions placed by the game designer (Matthews & Malloy, 2011). This previous
system used a randomized floodfill for both the landmass generation and the terrain determination.
However, the randomized floodfill approach that we utilized might generate terrains with illogical
or incoherent terrain transitions, such as a desert next to snowy tundra. This article summarizes
our solution to this problem by describing an approach to generating coherent transitions between
different terrain.

Overview of Coherent Terrain Map Generation

To incorporate coherency in our procedural generation of maps, we need an abstraction that
might capture the important considerations about weather, and that might permit us to build a map
with smooth transitions between regions with different weather conditions. Our view is that climate
will likely influence terrain, and that climate can be represented by a set of tuples that capture
the important features of the weather. In our current approach, we capture weather with a two-
tuple consisting of temperature and humidity. Using the LOI as points in a map that influence the
climate, transitions between LOI can be inferred from these locations using interpolation. Then, the
calculated, interpolated values can be used to determine the terrain type.

Coherent Terrain Map Construction

Climate in a story-driven game world should be coherent with the theme of the game and the
world. While climate itself is a complex system to estimate, for video games the subtleties of actual
weather patterns are not usually essential to the advancement of the plot. Inspired by Minecraft
Biomes, we represent climate as a two-tuple of values that capture temperature and humidity; how-
ever, our approach is extensible to tuples of values that can be sufficiently large enough to capture
other facets of weather and climate.

Using a two-tuple to summarize weather approximations, we begin our construction of a
coherent terrain map by building a cohesive climate map based on the important locations in the
story. Then, in the Terrain Boundary Map Section, we present our approach to the construction of

COHERENT TERRAIN IN PROCEDURAL MAPS 8

Figure 3. : This figures illustrates LOI in an interpolation grid.

a Terrain Boundary Map that is used to determine the boundaries between ranges of tuple values
that belong to a specific terrain type. Finally, in the Final Mapping Section, we complete our
construction by combining the climate map with a terrain type lookup, producing a final map with
cohesive terrains.

Climate Map Construction

Our approach to the construction of a climate map is summarized in Figure 2, which begins by
generating or reading a set of Locations of Interest in the map, LOI, together with a corresponding
climate attribute tuple for each location. The Locations of Interest are specialized for each story,
for example, a desert palace, or an ice cave. The climate of the former would likely have high
temperature and low humidity, while the latter would likely have low temperature and medium
humidity. These locations might be included in the game map in several ways; for example, they
may be created in a completely random fashion, or they may be directly related to the plot in a story
driven game, which forms the subject of our research.

After reading or generating the LOI, we then build an empty grid, step 2 in Figure 2, and
populate the grid with the LOI, step 3; Figure 4a illustrates a grid populated with LOI. To visualize
the climates in Figure 7, red and blue are used for temperature and humidity respectively, resulting
in purple for a high temperature and humidity rating or black for low in both values. Another visual
example is seen in Figure 3, with three LOI: A, B, and C. Each one of these LOI would have a
climate attached to it so that it would influence the passive area of the map.

Due to the nature of the interpolation, and to provide values for all areas of the map, edge
locations are added, as shown in Figure 4b. Edge locations are managed in the same fashion as the

(a) Climate (b) Climate with edges (c) Climate Filled

Figure 4. : This figure illustrates our procedure for creating climates. Blue values are high humidity,
red are high temperature, black is low in both, and purple are high in both values.

COHERENT TERRAIN IN PROCEDURAL MAPS 9

Populate list of Points of Terrain
Make empty grid in range 0...1

Put POT in grid

Use nearest neighbor algorithm to
establish terrain boundaries

= o=

Figure 5. : Algorithm outline to build Terrain Boundary Map

LOI but are, in fact, place-holder locations that provide a climate for the edges of the map. The strict
average of climates for all the LOI on the map is used for these edges. This allows for particular
maps to have higher or lower average temperatures, as well as looping the map. Looping is when
the player travels off the edge of a map and is transported to the opposite side. Looping is usually
used in World Maps.

Once the LOI’s influence is added to the grid, we interpolate values between the LOI for
the passive map area, which is step 4 in Figure 2. This interpolation maintains map coherence by
ensuring that no two neighboring tiles vary by too large a value in temperature or humidity, unless
the developer explicitly places two greatly varying Locations of Interest within a small distance of
each other; but these instances will be intentional rather than inconsistencies in the procedurally
generated map. The interpolation also ensures that a world’s climate will progress between two
locations logically, instead of suddenly getting hotter when walking towards a colder climate town.
A linear interpolation is used for speed, but other interpolation methods can be used to fill in the
passive area of the map. Figure 4c illustrates our placement of linearly interpolated tiles to produce
a climate filled terrain. Since climate typically follows irregular patterns, we introduce noise, as
seen in the Results Section, into the climate map for a more realistic pattern (Perlin, 2002).

Terrain Boundary Map Construction

In order to translate this resultant climate map into a final game map, we build a terrain
boundary map to determine the boundary for each particular terrain type. The steps used in the
construction of a terrain boundary map are summarized in Figure 5. An obvious choice of tuple
values for a terrain boundary map might entail the use of high temperature and low humidity to
represent desert climate, and high temperature and high humidity to represent jungle climate, as
seen in real world examples. However, to afford complete freedom to the developer in generating
the world, the climates and their humidity/temperature boundaries can specified in an input file, or
they be generated in an arbitrary manner.

B desert EILE
forestC show

B forestD swamp
forestR [JJtundra

Bl grass

Figure 6. : This key shows what each color represents in the Terrain Boundary Map.

COHERENT TERRAIN IN PROCEDURAL MAPS 10

(0.8, 0.8) (0.2,0.8) (0.8, 0.8)

IS
y,
NN

(0.2,0.8)

(0.2,0.2) (0.8,0.2) (0.2,0.2) (0.8,02)

(a) Our default Terrain Boundary Map. (b) An alternate Terrain Boundary Map.

Figure 7. : This figures illustrates complete Terrain Boundary Maps. Temperature is on the X axis
and humidity on the Y axis.

The types of terrain we used can be seen in Figure 6. Most of the names are stand-alone,
but the three different types of forest are: Coniferous Forest (forestC), Rain Forest (forestR), and
Deciduous Forest (forestD). However decided, the Points of Terrain are populated as in step 1. The
terrain boundary map is made in a two dimensional range from [0.0, 1.0) to represent the minimum
and maximum values of humidity and temperature, step 2.

We reserve values less than 0.2 and greater than 0.8 for “extreme” climate situations, or a
buffer zone, and avoid their direct use in map generation. The developer can then set locations
within the range and give that specific coordinate value a particular climate name, and color for
use in visualization. The developer is free to assign as many terrain types as desired, but two or
less terrain types might produce a rather lackluster environment. Step 3 is then employed to place
these POTs into the grid. After the desired terrain types are assigned, we use a nearest-neighbor
algorithm to determine the range of humidity and temperature ratings that “belong” to that type of
terrain, step 4. Optional noise can be applied at this step as well, but we disabled it for clarity of
terrain boundary mapping; which is illustrated in Figure 7a. This is an example of the default map
we generated, but another equally viable boundary map is seen in Figure 7b, which we created as a
proof of concept for our results in the Results Section.

Final Mapping

This mapping of tuples ascribing humidity and temperature coordinates to a particular terrain
is then used in the actual map to assign appropriate tiles in the game. The algorithm can be seen in
Figure 8. For each of the tiles in the initial climate map, described in the Climate Map Construction
Section, step 1, obtain the tuple values of (temperature, humidity), step 2. This tuple value is
then used as a lookup value, step 3, into the Terrain Boundary Map, as described in the Terrain
Boundary Map Construction Section. The terrain found at the specific coordinates is selected by
this lookup index of (temperature, humidity), step 4. This terrain is then used to fill the final map’s

COHERENT TERRAIN IN PROCEDURAL MAPS 11

For all tiles in climate map:

find (humidity, temperature) values

3. Use (h,t) as index into terrain
boundary map

4. Obtain terrain type tt

5. use Wt in final world map at same (x, V)

coordinate as the corresponding tile

in climate map

N —

Figure 8. : Algorithm outline to combine climate and terrain maps into a final world map

corresponding tile, step 5. This process is also illustrated in Figure 9.

Results

In this section, we describe the results of our prototype implementation, written in Python
and Pygame (Rossum, 2001; Shinners, 2011), of a procedurally generated map that incorporates
smooth weather transitions between different locations of interest within the map. We include screen
captures of some interesting maps that we have generated including a map that, using our approach,
is similar to a map generated in Final Fantasy IV, V, or VI.

The results we obtained allows us to create a consistent and coherent world based on locations
of interest influencing the surrounding humidity and temperature to dictate a specific terrain type.
The locations of interest can be user-defined and hardcoded, random, or procedurally generated as
well (Matthews & Malloy, 2011). Because of the interpolation we are guaranteed a gradual blend
between two locations’ climates.

These terrain types can then be applied to any sort of physical terrain layout, two dimensional
or three dimensional. The selections of terrain types are also user-adaptable for worlds with unique
terrains.

Figure 10 shows a randomized result for the system. The difference between Figure 10a and
Figure 10b is the addition of noise to allow for a more organic terrain boundaries, as seen in the

(a) Initial climate tile (c) Final selected terrain
with t=0.3 and h=0.6 (b) Looking up 0.3,0.6 in the Terrain Boundary tile to be set in the final
from the climate map. Map map.

Figure 9. : An example for a single tile creation for the final map.

COHERENT TERRAIN IN PROCEDURAL MAPS 12

differences between Figure 10c, which would be the result without noise, and Figure 10d, which is
created from the noisy climate map.

(a) Complete climate map (b) Complete climate map with noise
(c) Final result map (d) Final result map with noise

Figure 10. : This figure illustrates the transition from temperature and humidity to a terrain type.

Figure 11 displays the capability of this system to re-create existing maps, particularly the
Narshe/Figaro area from Final Fantasy VI as seen in Figure 11a. The climates available for this game
aren’t as numerous as the list we populated for the testing of the system, so another climate boundary
map was generated, Figure 7b. To do this test, an estimation of the location and climate were hard-
coded into the system. Using the actual map from FFVI, provided in Figure 11a, the Locations
of Interest are as follows: Narshe, seen in the northern most part of the map, was estimated to be
at coordinate location (200, 13). The climate of this particular town is snowy, cold and wet, so a
climate temperature/humidity value of (250, 700) was assigned. Figaro Castle, seen near the middle,
is a castle located in a vast desert. A coordinate location of (95, 240) with the climate value (800,
200) was estimated. Cave of Figaro is the lower left location and is a cave located in a grasslands
area, so location (/40, 333) and climate (500, 500). Two more subtle LOI are also included in this
area: directly below Narshe is a section of plains and forest. Because this is where the player begins
their first world map walk, these two seemingly arbitrary bits of terrain are actually LOI in the fact
that their purpose is for the player to experience different monsters appearing in different terrain;
a feature of Final Fantasy VI’s game mechanics. So, when creating the LOI to re-create the same

COHERENT TERRAIN IN PROCEDURAL MAPS 13

experience for the player, five LOI were created instead of the obvious three. The final two LOI were
created at (180, 150) and (300, 105) with climate values of (500, 750) and (500, 250) respectively.
Once these LOI were populated, the system proceeded and the resultant map created by our system
can be seen in Figure 11b, as well as an overlay in Figure 11c to show the validity of the result.

The importance of the recreation shown in Figure 11b is to show that, given only the LOI
to influence a map and changing nothing else, the same layout of the world section where the LOI
were obtained can be procedurally generated. This is vital because we intend to use this system for
recreating a similar, but unique, area to facilitate the replayability of a story-driven game. When
recreating this area, using the same LOI but with different coordinates, our proof of concept imple-
mentation demonstrates that the player can enjoy a similar experience as the original game’s map
with coherent terrain. Using new coordinates for the Locations of Interest, two new maps, seen
in Figure 12a and 12b, are created. The map in Figure 12a differs only slightly from the original
layout of the LOI taken from Final Fantasy VI, while Figure 12b shows that a completely unique
layout still generates a coherent map. The work that we present here will be exploited to enhance
our earlier research so that the procedural maps generated with our previous system will now be
marked by a high degree of coherence in terrain (Matthews & Malloy, 2011).

Concluding Remarks

We have described a system for procedurally generating maps for story-driven games, where
locations in the map are assigned algorithmically or by designer preference. We also described a
technique for generating terrain, together with climate to match the terrain, with smooth, coherent
transitions between terrain exhibiting different weather. We have also described our implementation,
written in Python and Pygame, that illustrates our construction with some procedurally generated
maps, including the procedural generation of the Narshe/Figaro area from Final Fantasy VI.

References

Andrew Doull. (2011). http://pcg.wikidot.com/category-pcg—games.

Bedigian, L. (2012). Call of duty’s $1 billion milestone: Monumental success or avatar-sized
hype. http://www.benzinga.com/trading-ideas/long-ideas/11/12/2198163/
call-of-dutys—-1-billion-milestone-monumental-success-or—avatar.

Blizzard Entertainment. (1996, November). http://diablo2.diablowiki.net/Diablo\
_Levels.

Dormans, J. (2010). Adventures in level design: generating missions and spaces for action adventure games.
In Proceedings of the 2010 workshop on procedural content generation in games (pp. 1:1-1:8). New
York, NY, USA: ACM.

Gee, J. P. (2005). Learning by design: good video games as learning machines. E-Learning, 2(1).

Hartsook, K., Zook, A., Das, S., & Riedl, M. O. (2011). Toward supporting stories with procedurally
generated game worlds. In S.-B. Cho, S. M. Lucas, & P. Hingston (Eds.), Cig (p. 297-304). IEEE.

Matthews, E. A., & Malloy, B. A. (2011, July). Procedural generation of story-driven maps. In Proceedings
of computer games: Ai, animation, multimedia, education and serious games (pp. 13—15). Louisville,
USA.

Perlin, K. (2002). Improving noise. ACM Trans. Graph., 681-682.

Rossum, G. van. (2001). Python library reference. Python Software Foundation.

Shaker, N., Togelius, J., Yannakakis, G. N., Weber, B. G., Shimizu, T., Hashiyama, T., et al. (2011). The
2010 mario ai championship: Level generation track. IEEE Trans. Comput. Intellig. and Al in Games,
3(4), 332-347.

COHERENT TERRAIN IN PROCEDURAL MAPS 14

Shaker, N., Yannakakis, G. N., & Togelius, J. (2012). Towards player-driven procedural content generation.
In Proceedings of the 9th conference on computing frontiers (pp. 237-240). New York, NY, USA:
ACM.

Shinners, P. (2011). Pygame. http://pygame.org/.

Smith, G., Whitehead, J., Mateas, M., Treanor, M., March, J., & Cha, M. (2011). Launchpad: A rhythm-
based level generator for 2-d platformers. IEEE Trans. Comput. Intellig. and Al in Games, 3(1), 1-16.

Sterling, J. (2012). Skyrims success inspires remedy to make story-driven games. Available
from http://www.gamefront.com/skyrims—-success—inspires—-remedy-to-make
-story-driven-games/

Vara, C. F.,, & Osterweil, S. (2010). Adventure games design: Insight and sense-making. In Meaningful play
2010.

Wikipedia. (2012). Level (video gaming). Available from http://en.wikipedia.org/wiki/
Level_(video_gaming)

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. I[EEE Transac-
tions on Affective Computing, 2, 147-161.

Yin-Poole, W. (2012). Skyrim success motivates remedy to stick with story-heavy games. Avail-
able from http://www.eurogamer.net/articles/2012-02-24-skyrim-success
-motivates-remedy-to-stick-with-story-heavy-games

COHERENT TERRAIN IN PROCEDURAL MAPS 15

(a) Source map from Final Fantasy VI (b) Coherent result from direct estimated coordinates.

: Figaro Castle

(c) Overlay

Figure 11. : This figure illustrates the capability of recreating existing layouts.

COHERENT TERRAIN IN PROCEDURAL MAPS

igaro Castle
[

(a) LOI from Final Fantasy VI in a similar arrangement.

Figaro Castle

(b) LOI from Final Fantasy VI in a different arrangement.

Figure 12. : Alternate applications of the LOI from Final Fantasy VI.

16

