
All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 1

All Together Now,

Using Multiple Frameworks to Inform Serious Game Design and Development

Declan A McClintock

Michigan State University

Author Note

The games discussed in this paper were used in an Institutional Review Board approved study at

Michigan State University. The preliminary results of that study were discussed at the Foundations of

Digital Games Conference 2021 (McClintock & Owen, 2021). However, a more complete and statistically

sound analysis of the data collected from the study is still underway and has not been completed at the

time of this paper’s publication. The focus of this paper is to discuss the design and development

process for the games as informed by existing frameworks. The author has no conflicts of interest to

disclose.

Correspondence concerning this article should be addressed to Declan Andrew McClintock,

Michigan State University. Email: mcclin61@msu.edu

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 2

Abstract

Existing serious game design interventions often focus entirely on the impactful results of the

intervention, while leaving out the details of the design and development processes for the games used

in the intervention. While the impact of the interventions is important in showing the power of serious

games, leaving out a thorough discussion of the design and development process for the game(s) used

in those interventions does a disservice to the field.

 In order for future researchers to know what design and development practices to adopt to

make successful serious games, game intervention studies need to include a detailed discussion of what

frameworks informed their design and development. This will give credit to where it is due for the

frameworks used while also highlighting existing issues with the frameworks not considered by the

original authors, leading to more complete frameworks in the future.

 This paper outlines the use of three frameworks in the design and development process of a set

of serious games to teach computer architecture concepts. Those frameworks are: the Mechanics,

Dynamics, and Aesthetics framework (Hunicke, LeBlanc, & Zubek, 2004); the Design, Play, and

Experience framework (Winn, 2009); and the Serious Game Design Assessment framework (Mitgutsch &

Alvarado, 2012). This paper discusses elements of serious game design and development encountered in

the design and development process of the games, which frameworks accounted for those elements,

and what elements the frameworks did not address. The result is a better understanding of how

multiple frameworks can inform serious game design and development, a recognition of elements that

existing frameworks cover well (mechanics, target audience, resulting experience, etc.), and a

recognition of elements future frameworks need to address (polish, application context, resources, etc.).

 Keywords: Serious Games, Educational Games, Serious Educational Games, Serious Game Design

Research, Serious Game Frameworks, Digital Game Based Education

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 3

Introduction

The design and development process of serious games is a serious concern for those wanting to

create serious games. Knowing the best design and development practices helps ensure that the most

impactful serious games are made.

Serious game design frameworks provide explanations of important elements that need to be

accounted for in the design and development process. However, a single framework often covers only a

subset of all elements that need to be considered. Referencing multiple frameworks could alleviate this

problem. This paper delves into the design and development process of a set of serious games informed

through the referencing of three frameworks to examine if the use of multiple frameworks led to more

elements being addressed.

The Frameworks

The frameworks referenced in the design and development of the games included: the

Mechanics, Dynamics, and Aesthetics framework (MDA) (Hunicke, LeBlanc, & Zubek, 2004); the Design,

Play, and Experience framework (DPE) (Winn, 2009); and the Serious Game Design and Development

framework (SGDA) (Mitgutsch & Alvarado, 2012).

These frameworks were selected because they cover a wide range of concerns. MDA puts a

focus on the relationship between the designer and the player (Hunicke, LeBlanc, & Zubek, 2004). DPE

expands directly from MDA and identifies a broader set of concerns in the design and development

process (Winn, 2009). SGDA puts its emphasis on the cohesion between the serious goal of a game and

other elements (Mitgutsch & Alvarado, 2012). The full set of elements covered by the individual

frameworks will become apparent in the later discussion of elements encountered when making the

games.

The Computer Architecture Games

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 4

The computer architecture games made using the frameworks were created for a study

comparing the application of a singular cohesive narrative to cover learning content in an educational

game against the use of several games with varied narratives (no narrative tie between them) that cover

the same content together. The preliminary results of applying the games were discussed at the

Foundations of Digital Games Conference 2021 (McClintock & Owen, 2021). This paper instead focuses

solely on the design and development of the games and highlights screenshots from the cohesive

narrative version of the game.

Elements of Serious Game Design and Development Encountered

Elements both identified and not identified by the frameworks were encountered when making

the computer architecture games. These elements break down into in-game elements, design elements,

development elements, and serious elements. Each of these sets of elements influenced the design and

development process of the computer architecture games. How well the utilized frameworks covered

them varied. This coverage will be shown in tables such as Table 1. In all these tables, D means the

framework directly accounts for an element, I indicates that the framework indirectly accounts for the

element by incorporating it as a part of another element, and a blank space means the framework does

not touch on the element at all.

In-Game Elements

In-game elements are elements that exist within the game and are primarily experienced

directly by the player. While all in-game elements have to be designed by the designer(s) of a serious

game, these elements are separated from the design elements by the fact that they are significantly

viewed or interacted with from the player’s perspective. In-game elements include: mechanics,

narrative, audio, art, and game cohesion. Table 1 shows which frameworks discuss these elements.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 5

Table 1

In-Game Elements Coverage in Frameworks

Mechanics

MDA, DPE, and SGDA all agree that mechanics are one of the most important elements of a

serious game (Hunicke, LeBlanc, & Zubek, 2004) (Winn, 2009) (Mitgutsch & Alvarado, 2012). Mechanics

are: “The rules that define the operation of the game world, what the player can do, the challenges the

player will face, and the player’s goals.” (Winn, 2009) Mechanics are what the player does when

interacting with the game. In the computer architecture games this includes: moving the player

character around, talking to non-player characters, moving puzzle pieces, and so on.

The outlined importance of mechanics from the frameworks led to mechanics being a primary

focus in the design and development of the computer architecture games. In particular, the frameworks

push towards the alignment of mechanics with the purposeful goal of the games. This meant creating

mechanics directly associated with the targeted learning content. Those mechanics are the interactive

circuit puzzles in the game, which have more focus and depth than the 3D platforming mechanics used

in the game’s overworld to move the player between puzzles. An example puzzle is shown in Figure 1.

Figure 1

Circuit Puzzle in the Computer Architecture Games

Framework Mechanics Narrative Audio Art Game
Cohesion

MDA D D

DPE D D I

SGDA D D I D D

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 6

Narrative

Narrative refers to both the embedded narrative, which is the narrative created for the game by

the designer, and the emergent narrative, the story the player experiences through their playthrough of

the game (Salen, Tekinbaş, & Zimmerman, 2004). In DPE, these are discussed as the designer’s story and

player’s story respectively (Winn, 2009). This designer’s story, or embedded narrative, is being included

as a part of the narrative element within the in-game elements because it is something that the player

interacts with and experiences. SGDA instead describes the narrative element’s relation to the purpose

of a serious game using examples to highlight how narrative should fit with purpose (Mitgutsch &

Alvarado, 2012).

The frameworks outline narrative as, at minimum, providing the reasoning for the player’s

actions in the game and, at best, having a direct connection to the serious game’s purpose. In the design

of the computer architecture games, the narratives involved reached both of these goals. Following the

guidance of the frameworks led to the narratives providing reasons for the player’s actions in the game

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 7

while also sprinkling in important computer architecture concepts into parts of the dialogue between

characters.

Audio

Audio refers to the sounds within the game that the player hears. This includes sound effects,

background music, and any spoken dialogue. Only SGDA touches on the audio element as part of what it

refers to as aesthetics, defined within SGDA as: “The audiovisual language conceptualized, chosen and

developed by the designers for the visualization, and the display of the elements involved in the game.”

(Mitgutsch & Alvarado, 2012) Despite mentioning audio in the definition, SGDA’s more detailed

discussion of aesthetics focuses on the graphical part of their definition while leaving out audio.

Unfortunately, the computer architecture games lack audio due to resources constraints.

However, audio was considered during the design and development process. In particular, development

wanted to focus on getting audio tied into the circuit puzzles because the mechanics involved in those

are directly related to the purposeful goal and that prioritization would be supported by SGDA.

Art

Art refers to the graphics and other visual elements of the game; everything the player sees.

SGDA argues that art, as part of their definition of aesthetics: “Plays a fundamental role in the

introduction of the game’s purpose and its impact on the player.” (Mitgutsch & Alvarado, 2012) SGDA

also argues that art be related as much as possible to the purposeful goal of a serious game, as it does

with all elements it covers.

What this meant for the design and development of the computer architecture games was that

the art quality was kept similar across the games, so as to avoid art quality as a confounding variable in

the research application of the games. It also meant that art in all the games was tied to the relevant

narrative and educational purpose of the games.

Game Cohesion

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 8

Game cohesion refers to the intertwining of the other in-game elements with each other. Strong

game cohesion occurs when the in-game elements work to support and enhance each other (inter-

element cohesion) and themselves (intra-element cohesion).

An example of strong inter-element cohesion would be a low gravity jump mechanic for the

player character in combination with a narrative that has communicated that the player is on the moon

and why, audio that provides the matching sound of an astronaut jumping and unsettling dust on the

moon, art that presents a convincing visual representation of the moon around the player character

alongside a suitable astronaut model for the player.

Poor inter-element cohesion would be in-game elements that do not match up with each other;

art showing the player on the moon, but a jumping mechanic that is the same as when the character

was on Earth.

An example of strong intra-element cohesion in the art element would be a consistent visual

style and color palette used throughout the game, such as maintaining a cartoonish style.

An example of poor intra-element cohesion in the narrative element would be a story with

contradictions, plot holes, and inconsistencies that are never resolved.

Game cohesion is important for serious games and games in general. Strong game cohesion

helps maintain immersion by providing the player with a world that maintains consistent rules that the

player agrees to and exists in during play. Providing poor game cohesion risks a game that repeatedly

breaks the player out of their immersion.

SGDA argues in favor of having more cohesiveness between the parts of a serious game and the

game’s purpose (Mitgutsch & Alvarado, 2012). SGDA argues through its example games that more

cohesion strengthens a serious game by aligning the game’s parts with its purpose, which should result

in a higher likelihood of the game’s purpose being realized (Mitgutsch & Alvarado, 2012).

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 9

SGDA’s recommendations led to game cohesion being maintained in the computer architecture

games by making sure all elements of the game related back to the purposeful goal and that the

elements were consistent within themselves.

Design Elements

Design elements are elements that are considered primarily by the designer(s) of a serious

game. The design elements include: polish, technology, user interface, target audience, balance,

application context, gameplay/play dynamics, resulting experience, designer perspective, player

perspective, academic perspective, content expert perspective, and design cohesion. Table 2 shows

which frameworks discuss design elements.

Table 2

Design Elements Coverage in Frameworks

Framework Polish Technology User
Interface

Target
Audience

Balance

MDA I I

DPE D D D D

SGDA D

Framework Application
Context

Gameplay/Play
Dynamics

Resulting
Experience

Designer
Perspective

Player
Perspective

MDA D D D D

DPE D D D D

SGDA D

Framework Academic
Perspective

Content Expert
Perspective

Design
Cohesion

MDA

DPE D D D

SGDA D

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 10

Polish

The idea of polish comes from the game development industry and is not mentioned in the

frameworks. Polish is the finishing touches across the in-game elements. The game development

industry refers to polish as the last ten percent of work (Bithell, 2015) (Russell, 2012). According to

Naughty Dog’s Benson Russell, polish is the removing of imperfections from the game that could take

the user out of their immersion in the experience (Russell, 2012). Any of the in-game elements can be at

differing states of polish.

A mechanical example of lack of polish would be a character controller that gets stuck on the

geometry or shape of a level. This would cause frustration for the player that can no longer play the

game because of a fault of the game and not of their own skill. This then leads to the player being

removed from their immersion. Inversely, a mechanical example of polish would be a character

controller that does not get stuck on the geometry of a level.

Minor inconsistencies in the story, missing sound effects or unsuitable sounds, or a texture that

is slightly out of place are all examples of lack of polish. These may seem like insignificant issues when

compared to their game breaking counterparts, such as a completely incoherent story, but the game

development industry still puts focus on polishing their games to minimize the likelihood of a player’s

immersion being broken.

It is just as important in serious game design and development to resolve these smaller issues so

that the player remains immersed in the experience, making the purpose of the game more likely to be

realized.

While polish is not directly covered by the frameworks employed, it was still attempted in the

computer architecture games. In the computer architecture games’ development cycle, this meant

resolving these smaller issues. Some of the more polished parts of the games include the overworld’s

animations when the player has made a working circuit puzzle, such as the seven segment display that

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 11

runs off of the player’s built circuits as seen in Figure 2. Another example is a substantial amount of time

ensuring the game physics did not result in the player becoming stuck.

Figure 2

Seven Segment Display Working from Player’s Circuits

Technology

Technology refers to the hardware and software that the game uses. A designer needs to be

cognizant of the limitations and affordances their chosen technology supports. For example, a Virtual

Reality (VR) game gives the designer a unique control scheme to work with in which they can have the

player physically move their body to provide input. This might work well in a serious game with the

purpose of encouraging exercise which lines up with possible mechanics. However, the designer must

also consider the limitations VR presents. VR set ups are expensive. They require a powerful computer

and additional devices. If the serious game needs to reach a community without access to VR devices,

then the designer has good reason to not choose to develop a VR game.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 12

DPE summarizes the technology element well: “Overall, the capabilities and limitations of the

technology and the resources required to implement the technology may greatly influence the design

and should be considered throughout the design process” (Winn, 2009).

The framework’s recommendations on technology had a strong beneficial influence on the

computer architecture games. The games needed to run on a course website. This meant that the

games needed to run on web browsers. The design of the games was adjusted to work within the

computational power limitations introduced by this. Because this was done early in the design process,

the possible issues introduced by the technological limitations of web browsers were avoided and the

advantages, easy distribution to students, were achieved.

User Interface

User interface (UI) "encompasses everything the user sees, hears, and interacts with and how

that interaction happens (i.e., the control system.)" (Winn, 2009) This includes the physical interactive

components of a game, such as a controller or keyboard, and the interactive screens the player sees in

game, such as the manual used in the games shown in

Figure 3.

Good UI is easy for a user to miss, meaning they don't notice it because it is easy to interact

with. In the computer architecture games, UI was considered in making sure the various buttons and

drag-able pieces of the UI in the game were easy to interact with. This included making sure buttons in

the same group, such as the scroll space of the manual pages on the left of the manual in

Figure 3, were sized the same and spaced apart evenly.

Figure 3

Manual UI in Game

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 13

Target Audience

Target audience refers to who is meant to play the game. All of the frameworks discuss the

target audience (Hunicke, LeBlanc, & Zubek, 2004) (Winn, 2009) (Mitgutsch & Alvarado, 2012).

According to DPE: “Play is greatly influenced by not only the designer, but also the player, including his

or her cognitive, social, cultural, and experiential background that he or she brings to the given play

experience… The target audience for the game must be strongly taken into account throughout the

design process.” (Winn, 2009) Both DPE and SGDA point out that every player is unique and comes into

playing a game with their own experiences and expectations (Winn, 2009) (Mitgutsch & Alvarado, 2012).

SGDA’s example on how this can cause issues is play literacy, where different players might

already be game players and thus pick up the controls quickly while others are not and will need the

game to bring them up to speed (Mitgutsch & Alvarado, 2012). If the target audience is mostly new to

gaming, the designer(s) must find a way to address that.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 14

The recommendations around target audience had a strong beneficial influence in the design of

the computer architecture games. The target audience for the games is computer science

undergraduate students, typically third year students. This means that the target audience should

already have a basic computer science background, include both game players and non-players, and

potentially be culturally diverse. Accommodating this audience meant keeping the 3D platforming

challenges in the game simple (to accommodate non-game players) while implementing a flow of

challenging tasks in line with what the students should already know or not know, keeping the

narratives approachable to a diverse audience, and lining up the flow of learning content in the game to

fit into the course. Without the guidance from the frameworks on this element, many of the design

changes that made the games more approachable would not have been made.

Balance

Balance refers to how well the game’s challenges fit with the player’s knowledge and skill. DPE

relates balance to Mihaly Csiksentmihalyi’s theory of flow (Winn, 2009). The original theory of flow

focuses on pairing a skilled person with a challenging task that is neither too hard nor too easy

(Csikszentmihalyi, 1990). This perfect matching of task to skill would put the person in a flow state in

which they lose awareness of themselves, concentrate only on the task, and experience a sense of

control (Csikszentmihalyi, 1990). DPE applies this to balance in games by pointing out that a game

presents challenges at differing levels of skill requirements which can be matched to a player’s skill level

(Winn, 2009).

Early on in a game the challenges should have relatively low skill requirements to match the new

player’s weak skills. Then the game should maintain that balance of player skill over the course of the

game. At any point in the game the challenge presented should provide the player with something they

are ready for, but not something too easy such that it causes boredom for the player. Similarly, the

challenges should never be so difficult that the player finds them frustrating. Balance in this sense is the

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 15

designer crafting a sequence of increasing challenges that always match with the player’s skills, thus

keeping the player in the flow state (Winn, 2009).

The computer architecture games followed these ideas from DPE on balance and flow. They

present simple tasks at first to introduce how to move around the game world, how to do simple tasks

in the circuit puzzles, and how to access the in-game manual. The games also follow the flow of learning

content as presented in the course the games draw from and are designed for, balancing the learning

challenges presented.

Application Context

The application context is where the game is being played. The place of play can be just as

important to the designer as the experience and cultural background of the player. If the game is to be

played in a live classroom, then the designer must consider the role of the teacher in the player’s

experience with the game. If the game is to be played as part of a fixture in a museum, then what does

that mean for the game’s design? Perhaps the museum will only allow each player to play the game for

a set amount of time. The application context introduces design challenges that should be addressed by

the designer. Unfortunately, none of the frameworks utilized covered application context. While this is

not at all a fault of the frameworks themselves, it is important to consider that future serious game

designers and developers might benefit from a framework including it alongside the other elements

covered by the frameworks used or recognized in the process of making the computer architecture

games.

The application context for the computer architecture games is a fully online classroom. This

application context meant that the games would be played at home by students on various hardware

and software.

This produced two possible options. One was to create operating system specific builds of the

games for the most likely used operating systems of Windows, MacOS, and Linux. The other was to

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 16

produce WebGL builds that could be run on web browsers. WebGL builds were chosen so that the game

could be hosted on the same website as a course which taught the same content as the games. This

meant that players would not have to install the game on their systems to play it.

Gameplay/Play Dynamics

Gameplay/play dynamics refers to the interaction of the game’s rules and in-game elements

with the player’s input. In MDA and DPE, dynamics sit in between the designer’s created mechanics and

the player’s resulting emotional responses from the game play (Hunicke, LeBlanc, & Zubek, 2004) (Winn,

2009). By MDA’s definition: “Dynamics describes the run-time behavior of the mechanics acting on

player inputs and each others’ outputs over time.” (Hunicke, LeBlanc, & Zubek, 2004) In MDA,

mechanics are focused on as what determines the dynamics (Hunicke, LeBlanc, & Zubek, 2004). In DPE’s

multi-layered framework, it accounts for an influence between its layers of learning, storytelling,

gameplay, and user experience (Winn, 2009). In DPE a design decision on what content to teach as part

of the learning layer exerts an influence on the mechanics designed in the gameplay layer which then

has an effect on the dynamics.

DPE provides a deeper depth of understanding of how the dynamics could be influenced beyond

just the designed mechanics. However, DPE does not fully include some of the in-game elements such as

art and audio. In the definition of the gameplay/play dynamics element used in this paper, the

interaction of ALL the mentioned in-game elements play a role, not just the mechanics.

Gameplay/play dynamics played into the design of the computer architecture games by keeping

the designer mindful of how the various in-game elements would interact during play. For example, the

art and mechanics elements interact when the player provides input to make their character jump. The

character model animates in response to the input at the same time the game physically moves the

character model up and down along the jump arc. Whether or not that interaction provided the player

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 17

with the desired resulting experience is the next consideration after that gameplay/play dynamic plays

out.

Resulting Experience

The resulting experience element refers to the goals to be accomplished from playing the game.

This is the desired end result for the player that the designer must consider. DPE and MDA include this

as the resulting emotional response from the player (Hunicke, LeBlanc, & Zubek, 2004) (Winn, 2009).

MDA refers to the player’s emotional response as aesthetic which overlaps with the common use of the

term to describe the visual and auditory parts of a game (Hunicke, LeBlanc, & Zubek, 2004).

DPE changes this terminology to affect which is a term meaning emotion or desire (Winn, 2009).

DPE describes how the designer should consider the affective goals of their game, which are the

emotional responses the game is trying to evoke (Winn, 2009). DPE provides example affective goals as

the forms of fun defined by Heeter at al. (Heeter, et al., 2003). These forms of fun are beauty,

immersion, intellectual problem solving, competition, social interaction, comedy, thrill of danger,

physical activity, love, creation, power, discovery, advancement and completion, application of an

ability, altruism, and learning (Winn, 2009) (Heeter, et al., 2003). DPE also expands on the resulting

experience the designer should consider beyond the affective goal.

DPE includes "learning" as what the player learns from playing the game (Winn, 2009). Learning

is one purpose a serious game could have. SGDA goes more broadly, arguing that design should revolve

around the purpose of the serious game, which could be anything from learning to changing political

opinions (Mitgutsch & Alvarado, 2012).

The recommendation from the frameworks led to a defining of the resulting experience and

affective goals for the game which provided some influence over the design process. The resulting

experience targeted by the computer architecture games was for the player to learn computer

architecture concepts and find the games engaging. The affective goal for the resulting experience of the

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 18

games included the learning and intellectual problem solving forms of fun. Defining and then

referencing these goals led to more focus on the circuit puzzles in the design and development process

as they relate the most to the learning targeted by the games.

Designer Perspective

The designer perspective element refers to the view of the game from the eyes of the

designer(s). A designer has a unique perspective on the game because of their background in game

design. The perspective of the designer is: “Focused on creating engaging and entertaining game play”

according to DPE (Winn, 2009). The designer is able to suggest ways in which the game can be made fun.

They will know what in-game elements will fit best with the purpose of the serious game and lead to the

desired resulting experience for the player.

Researchers working with serious games should carefully consider the designer perspective and

ensure that a game designer is present when developing a game. Without the designer perspective the

game risks losing the engaging interaction that is central to any successful game.

The designer must consider their own design perspective and be knowledgeable of holes in their

own perspective. It is very rare for any one designer to have a depth of knowledge and background for

every in-game element. Someone who has spent their career as an audio designer will have great input

for the audio element but will likely have weaker input for the mechanics element. Likewise, a gameplay

designer is likely to have great input for the mechanics but not audio. Filling the holes in a team’s design

perspective is important to ensuring that a serious game is the best game it can be.

The designer perspective was considered in the computer architecture games by a game

designer whose background includes the design of mechanics. Holes in the designer perspective of the

team were filled in through conversations with Michigan State University game development faculty

members knowledgeable in the relevant design spaces. Gathering more designer perspectives led to

general improvements across the game, such as more concise platforming levels.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 19

Player Perspective

The player perspective element refers to the player’s unique view of the game. Target audience

defines who the players are, whereas the player perspective defines how those players view the game

and feel about it.

The designer(s) begin with an initial idea of what the player perspective will be based on the

defined target audience for the game. The player perspective the designer(s) design around changes

over the iterative design process when the designer(s) receive player feedback after playtesting.

The iterative design process is the cycle of design, prototype, playtesting, that repeats itself over

and over again until the prototype game becomes the final release game (Winn, 2009). Players that fit

the defined target audience playtest the prototype game and provide the designers with feedback, the

real player perspective, which then influences the next iteration of design changes.

MDA and DPE argue the importance of considering the player’s perspective (Hunicke, LeBlanc, &

Zubek, 2004) (Winn, 2009). MDA puts it like this: “When working with games, it is helpful to consider

both the designer and player perspectives. It helps us observe how even small changes in one layer can

cascade into others.” (Hunicke, LeBlanc, & Zubek, 2004). Under MDA’s definitions, that means small

changes to the mechanics lead to changes in the resulting experience for the player which can only be

fully understood by considering the player perspective. This is expanded on in DPE where a change to

any element can influence the player’s experience (Winn, 2009).

In accordance with the guidance from using the frameworks, the player perspective was

gathered for the computer architecture games from playtesting with the games’ prototypes using

players similar to the defined target audience. The advantages of considering the player’s perspective

included some changes made to make the tutorial parts of the game better spread out. Without

considering this element as discussed in the referenced frameworks, the pacing of the game’s would

likely have been much worse.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 20

Academic Perspective

Academic perspective refers to the researcher’s view of the game. The researcher’s perspective

is unique in that they know the proper data collection and analysis methods that can be applied to

answer the research questions the serious game is targeting. DPE states that the academic is:

“Interested in various academic theories, be they from educational pedagogy, communication theory,

etc.” (Winn, 2009).

The designer and development team must consider the academic perspective during design and

development to ensure that the resulting game is capable of answering the researcher’s questions. This

could involve adding data collecting methods directly into the game. The academic perspective element

could also influence other elements. For example, the nature of the researcher’s question could

influence the technology that can be used. If the research questions are focused on virtual reality

capabilities only, then the game must be made for virtual reality devices.

During the development of the computer architecture games the academic perspective led to

the data collection methods integrated directly into the game. These methods included automatic (and

anonymized) recordings of whenever a player edited a circuit puzzle, completed a circuit puzzle,

completed a section of learning content (checkpoint), and so on.

Content Expert Perspective

Content expert perspective refers to the view from a person knowledgeable in the content area

of the serious game’s purpose, or as DPE puts it: “[the team member] interested in the given subject

matter” (Winn, 2009). In a serious educational game, this could be provided by the instructor(s) familiar

with the game’s learning content.

Additionally, if the game is more specific in the community it targets, it should also employ a

content expert on that community, preferable a member of the community, to provide their perspective

to make the game’s design more impactful for that community. In a 2019 paper on computer science

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 21

pedagogy, it was found that: “Teacher moves that encouraged students to share their personal

perspectives almost always coincided with observations of increased student engagement.” (Ryoo,

2019) If a serious game can incorporate the cultural and experiential backgrounds of its target audience,

then it should do so.

For the development of the computer architecture games, the content expert perspective was

provided by a previous professor for the class the games were based on. This same professor had also

previously created course materials that teach the same content that is in the games. The content

expert perspective provided covered both the learning content the game targets and the community the

game was designed for. The inclusion of this content expert perspective resulted in a design better

aligned to the learning content.

Design Cohesion

Design cohesion refers to how well the various design elements, including the design of the in-

game elements, work together. One example of design cohesion is the alignment of the various

perspectives mentioned.

DPE calls the aligning of the academic, designer, and content expert perspectives the heart of

serious game design (Winn, 2009). DPE argues that properly aligning those three perspectives leads to a

whole that is greater than the sum of its parts (Winn, 2009). SGDA similarly pushes for cohesiveness in

serious games as a whole, arguing that cohesion supports the purpose of the serious game (Mitgutsch &

Alvarado, 2012).

DPE also discusses how its various layers can influence each other: “Certain design decisions are

complementary or conflicting across the layers.” (Winn, 2009) A designer should seek to maximize

design cohesion by recognizing the complementary aspects of their design decisions and by seeking

them out. At the same time, the designer should attempt to minimize the conflicts across the design

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 22

elements. For example, choosing an art style that requires a cutting edge graphics card while the

application context limits the technology to mobile devices is a conflict.

The design cohesion element as identified by the frameworks was considered across many

design decisions in the development of the computer architecture games. For example, the content

expert perspective and mechanics element align in that the mechanics are modeled off of what would

be taught in class. Similarly, the balance of challenges and progression was modeled off of the content

expert perspective. Overall, the consideration of design cohesion led to the games having a more

complementary design.

Development Elements

Development elements are elements of the game design and development process that fall

primarily under the view of the developer(s), which can also be the designer(s) for the game. The

development elements are focused on the process of making the game. The design elements focus on

the thoughts and expectations of the designer. The development elements then take those thoughts

and turn them into the in-game elements. The in-game elements can then confirm or refute the

designer’s expectations through the use of playtesting, after which the process repeats itself until the

best possible game is created. The development elements include: playtesting, iterating, prototyping,

resources, asset acquisition, communication, and extensibility. Table 3 provides a breakdown of which

frameworks discuss development elements.

Table 3

Framework Playtesting Iterating Prototyping Resources

MDA D D

DPE D D D

SGDA

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 23

Development Elements Coverage in Frameworks

Playtesting

Playtesting refers to the act of playing the game to discover issues with the game that need to

be addressed. These issues can be bugs, which are ways the game is not working as intended such as the

game crashing. But these issues can also be problems with the resulting experience, such as when a play

tester finishes playtesting the game and finds it unengaging or unimpactful to its purpose.

Both MDA and DPE cover playtesting. Playtesting is mentioned in MDA as part of their tuning

process in which changes are made iteratively to better realize the design goals and remove flaws

(Hunicke, LeBlanc, & Zubek, 2004). DPE covers it as part of its description of the iterative design process

in which the game is designed, a prototype developed, the prototype play tested for feedback, and then

the design changed and the process repeated (Winn, 2009). The key point to play testing is that it

provides feedback for the team on whether the game is functional and whether design goals or the

purpose of the game are being realized.

Playtesting can be done internally by the developers and designers to search for bugs that need

to be fixed and to get an idea on whether the game is meeting its serious purpose. However, playtesting

must be done with the target audience to get an accurate assessment of the resulting experience and

purpose of the game at any state. Ideally this includes both first time play testers and repeat play testers

from the target audience.

Framework Asset
Acquisition

Communication Extensibility

MDA

DPE

SGDA

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 24

First time play testers are important because they will give the team an idea of how the game

would be received by the target audience if it was released as is. Repeat play testers are important

because they will develop a better understanding of the game over repeated sessions and thus provide

deeper feedback over time.

Playtesting in the development process of the computer architecture games was done internally

by the designer and externally with players (first time and repeat) resembling the target audience. The

advantages of playtesting included the catching of various bugs during development and feedback from

players leading to smoother tutorial parts in the games.

Iterating

Iterating refers to the part of game development in which changes are made to the game based

on the feedback received from playtesting. This includes the fixing of bugs and the changing of the in-

game elements and design elements in an effort to better achieve the purpose of the serious game and

improve the resulting experience. In MDA this is referred to as tuning (Hunicke, LeBlanc, & Zubek, 2004)

and DPE encapsulates iterating within its iterative design process (Winn, 2009).

In the computer architecture games, iterating and the iterative design process as described by

DPE were used to keep the games on track to achieve their purpose and be engaging. In general, this

made the design and development run smoothly.

Prototyping

Prototyping refers to the creation of a feature incomplete version of the game that is meant to

be play tested for feedback that will then inform the iterations made. A prototype can be made to target

specific areas of desired feedback and need not be digital. A paper prototype for example is a prototype

created using physical media like paper and dice (Winn, 2009). The advantage of making a paper

prototype is that a designer can test their design, or an approximation of it, without resources needing

to be spent developing the digital version.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 25

Prototyping, iterating, and playtesting should be done at all stages of a game’s development.

More complex prototypes can be made as development on the game is under way and assets are

created. For example, a first playable prototype showing the mechanics of the game can be made by the

programmer(s) utilizing programmer art (cubes and other primitive shapes). This prototype needs only

the programmer’s code that creates the desired mechanics, and its purpose is to gather feedback on

those mechanics.

Once the various assets the game needs are created and start being implemented into the

game, the game itself becomes a prototype to be play tested. At this point in development the game

prototype should be kept in a play-testable state.

A play-testable state means the game has no game breaking bugs, such as those that cause a

crash. Doing this allows play testing to provide the most relevant feedback on the game possible. Not

doing so means that the version of the game ready for play testing does not resemble the current state

of the game’s development. Which means that feedback received from play testing is less applicable to

the current development state.

The computer architecture games utilized prototyping early in development to show basic

functionality of the game’s mechanics, such as the dragging and dropping of puzzle pieces in circuit

puzzles. The games were also maintained in play-testable states throughout their development. This

meant that the games were play tested at all points of the process, leading to a smooth process of

finding and fixing bugs that might not have happened without the iterative process pulled from DPE.

Resources

Resources refers to the people, skillsets, money, time, and other resources available to be used

in development. The available resources determine what designs are feasible. If the skillset of the team

is not complimentary to a design, then that design can be discarded. Similarly, if a design is too costly in

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 26

money, time, or any of the available resources, it becomes unfeasible. A consideration of resources is

not discussed by the frameworks referenced in making the games.

While the resources element and its imposed restrictions should be left out of the initial

brainstorming of game ideas, it is valuable throughout the rest of development. In the remainder of the

brainstorming process the restrictions imposed by resources will quickly cut out unrealizable ideas. This

saves the team from spending resources on an idea that will likely never come to fruition. Beyond

brainstorming, the resources element acts as a check on whether the game’s development is still on

track for completion. Either more resources need to be collected or cuts to the design need to be made

if the resources are being depleted too quickly.

The resources element imposed large restrictions on the development of the computer

architecture games. The budget for developing the games was non-existent. The available skillsets to the

team were programming, research, and teaching related. This meant that availability of art and audio

assets were slim to none. Because of these limitations, resources were carefully allocated and the design

changed to ensure the best possible games were still made.

Asset Acquisition

Asset acquisition refers to the purchasing, creating, or otherwise obtaining of assets to be used

in game. These assets include music, sound effects, 3D models, sprites, code, levels, etc. The asset

acquisition element requires the developer(s) to consider how assets are going to be acquired for the

game. Will they be created internally or purchased? Regardless of how assets are acquired, they are

essential building blocks for the game and therefore their obtainment is a serious concern. MDA, DPE,

and SGDA do not discuss asset acquisition or how it might relate to the elements they do cover.

Asset acquisition requires the developer(s) to consider the resources they have available.

Specific assets are more easily created with complimentary skill sets. A trained 3D artist will have an

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 27

easier time making a quality 3D model than a sprite sheet. If the skillsets the team needs for a design are

not available, then the developer(s) must consider how their other resources can fill that gap.

Money can be used to buy existing assets off of stores such as Unity’s Asset Store (Unity, 2022)

or Turbosquid (Shutterstock, 2022). But finding existing assets that fit in well to the design of a game can

be difficult. The developer(s) must manage their resources to keep development flowing smoothly, and

they must coordinate with the designer(s) on limitations of resources because that availability will affect

the design process. If certain assets cannot be acquired, then the designs requiring them cannot feasibly

be completed.

Asset acquisition in the development of the computer architecture games was limited by the

available resources. While all of the code was made by the team, the lack of art related skillsets meant

that little art could be made by the team. This issue was resolved by reaching out to collaborators willing

to allow the use of their work. The lack of audio in the games unfortunately could not be resolved the

same way, as fitting assets that could be obtained freely were not found for all the places audio would

be needed in the games’ designs.

Communication

The communication element refers to the building and maintaining of relationships as well as

the transfer of information between team members. Properly building and maintaining the relationships

between team members ensures a smoother development process, as it eliminates conflicts between

team members. The employed frameworks unfortunately did not have recommendations for

communication as they are focused on other sets of topics.

Communication is an important aspect to every team based project, including serious game

design and development. A serious game cannot be made easily without being able to effectively

communicate the research goals, game design ideas, and purpose between team members. Similarly,

the asset creation process of a game is hampered by lack of communication.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 28

Games have many pieces, typically developed by different people. In order to put the pieces

together, the artists, programmers, designers, and so on need to be in tight communication. A serious

game developed with strong communication is more likely to have good game cohesion and design

cohesion.

Tight communication was maintained during the development of the computer architecture

games. The development team met at least once a week and utilized the task management software

Trello (Atlassian, 2022) to keep track of development. This made it easier for the team to make changes

and cuts throughout the development process.

Extensibility

Extensibility refers to how easy it is to build upon the project or any of its parts. Extensibility is

important to consider because any task that is finished using an extensible solution will make new

related tasks easier to complete. The frameworks referenced do not discuss extensibility.

An example of extensibility from the coding discipline would be creating scripts following a

coding standard. A coding standard is a set of rules for programmers on a team that outlines how they

should write code. This includes rules on how to write comments such as removing any large blocks of

commented out code. Other rules in a coding standard can include how to name variables and classes.

Coders on a team are able to easily work on each other’s scripts if they all follow the same coding

standard. This then improves extensibility as any new task related to a script can be picked up and done

more easily by any programmer, not just the original creator.

This applies more generally. Every discipline has its own set of best practices that should be

followed. Making sure the team follows best practices is a good way to improve extensibility on a

project. However, there are threats to maintaining extensibility.

Perhaps the biggest threat to extensibility is simply the availability of resources and their proper

application. When the team is put under a difficult deadline the likelihood of best practices being

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 29

followed decreases, or it is decided that best practices be dropped purposefully in favor of faster yet

more error prone development. The solution to this is to manage resources effectively. However, these

situations sometimes become difficult to avoid given that the iterative nature of game design and

development can produce unforeseen problems.

Beyond extensibility inside of development, there are also ways to provide extensibility beyond

the end of development. One way is to package the completed game in a publicly available repository.

That way the game can be used again in future research. A better way is to package the entire game

project, including relevant documentation and assets, so that future researchers can both use the game

and make changes to it. Doing either of these things provides a way for a serious game to keep making

an impact beyond its original application.

Extensibility in the computer architecture games included establishing a coding standard prior to

the start of the games' development. However, extensibility issues occurred due to tight deadlines

leading to code not perfectly in line with the standard. As for extensibility beyond the development, a

release of the games' project files will be done when research using the games is completed.

Serious Elements

The serious elements are elements unique to serious game design and development. The

academic perspective and content expert perspective elements could fit underneath this category, but

they have been put under the design elements as those two perspectives are of most concern to the

designers. This also allows more emphasis to be put on the element most unique to serious game design

and development, the purpose element.

Purpose

Purpose refers to the impact the serious game is trying to have on the player. Because purpose

is the primary point of making a serious game, it exerts influence over all the other elements. SGDA is

the only framework to directly discuss purpose.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 30

As SGDA puts it: “The driving force that functions as the pivotal influence over the elements of

the game design should be the purpose of the game.” (Mitgutsch & Alvarado, 2012) This view is briefly

reflected in the other frameworks in how they all argue that mechanics should be tightly coupled with

the purpose of the game (Hunicke, LeBlanc, & Zubek, 2004) (Winn, 2009). Altogether, these frameworks

make it clear that a serious game’s purpose should be the dominating concern in any design decisions.

Similarly, purpose should govern development decisions.

The clearest example of how purpose influences development is in the loop of prototyping,

playtesting, and iterating. The purpose of the game needs to be considered during playtesting to

accurately judge whether the purpose is being achieved or not. Then that purpose relevant feedback is

incorporated into the changes made in iterating which then culminates in the next prototype.

The purpose of the computer architecture games is to teach undergraduate computer science

students computer architecture concepts. This purpose influenced every decision made in the design

and development of the games, and is why much of the development focus, time, and resources were

put towards the circuit puzzles as they most closely relate to the learning content, and this would follow

the recommendation of the referenced frameworks.

Conclusions

Using multiple frameworks to inform the design and development process of a set of serious

games led to more elements in those processes being adequately addressed than if only a single

framework had been referenced. The frameworks were particularly useful in providing the iterative

process from DPE which combined with the discussion of cohesion from SGDA led to a design for the

games that emphasized their learning goals primarily through mechanics and supported by the other

elements. However, there are still elements found during those processes that the frameworks did not

account for which had influence over the design and development of the games: polish, application

context, resources, asset acquisition, communication, and extensibility.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 31

Some of those missing elements exerted a large influence on the process for the computer

architecture games. Application context, resources, and asset acquisition in particular put limitations on

the design. This included pushing the technology the game was built on to be web browsers and forcing

the use of whatever art could be obtained at no cost. It is not the fault of the frameworks for not

discussing these elements, as the frameworks are made to focus on specific topics. However, it is worth

noting that even with three frameworks referenced in the design and development process, there were

still important elements encountered that perhaps should be incorporated into future frameworks.

Future Work

One thing that might be beneficial for future serious game developers is the formation of a

more comprehensive framework that touches on all the elements recognized in the field. Existing

frameworks focus on individual elements or small sets of elements in the serious game design and

development process. Combining the focuses across frameworks into a single framework would provide

future developers a single point of reference to work from. This would be advantageous to the field as it

would provide newcomers a strong place to start that references the other older frameworks the

researcher should also review. Taking this a step further, this comprehensive framework could pull not

just from other frameworks, but also from methodologies such as the Gameplay Loop Methodology

(Czauderna & Guardiola, 2019) or from the many fields interested in serious games. Doing so would help

make a robustly applicable serious game design and development framework that could also point to

the various practical methods and solutions for addressing elements.

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 32

References

Atlassian. (2022). Trello. Retrieved from https://trello.com/

Bithell, M. (2015). Indie Polish: Making the Most of the Last 10%. Game Developers Conference. Mike

Bithell Games. Retrieved from https://gdcvault.com/play/1022080/Indie-Polish-Making-the-

Most

Csikszentmihalyi, M. a. (1990). Flow: The psychology of optimal experience (Vol. 1990). Harper & Row

New York.

Czauderna, A., & Guardiola, E. (2019). The gameplay loop methodology as a tool for educational game

design. Electronic Journal of e-Learning, 17(3), 207--221. Retrieved from https://academic-

publishing.org/index.php/ejel/article/view/1884

Heeter, C., Chu, K., Maniar, A., Mishra, P., Egidio, R., & Winn, B. (2003). Comparing 14 forms of fun (and

learning and gender issues) in commercial versus educational space exploration digital games.

International Conference on Digital Games Research.

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A formal approach to game design and game

research. Proceedings of the AAAI Workshop on Challenges in Game AI, 4, p. 1722. San Jose, CA.

McClintock, D., & Owen, C. (2021). Common Narrative in Educational Video Games: A Design of Games

to Teach Circuits. Proceedings of the 16th international conference on the foundations of digital

games, (p. Publication Pending).

Mitgutsch, K., & Alvarado, N. (2012). Purposeful by design? A serious game design assessment

framework. Proceedings of the International Conference on the foundations of digital games,

(pp. 121--128).

Russell, B. (2012). The Last 10: Going From Good To Awesome. Game Developers Conference. Naughty

Dog. Retrieved from https://gdcvault.com/play/1015601/The-Last-10-Going-From

All Together Now, Using Multiple Frameworks to Inform Serious Game Design and Development 33

Ryoo, J. (2019). Pedagogy that supports computer science for all. ACM Transactions on Computing

Education (TOCE), 19(4), 1--23.

Salen, K., Tekinbaş, K. S., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. MIT press.

Shutterstock. (2022). Turbosquid. Retrieved from https://www.turbosquid.com/

Unity. (2022). Unity Asset Store. Retrieved from https://assetstore.unity.com/

Winn, B. M. (2009). The design, play, and experience framework. In Handbook of research on effective

electronic gaming in education (pp. 1010--1024). IGI Global. Retrieved from

http://ksuweb.kennesaw.edu/~rguo/2015_Spring/CGDD4303/readings/winn-dpe-chapter.pdf

